Pancreatic Neuroendocrine Tumors in Glucagon Receptor-Deficient Mice

被引:18
|
作者
Yu, Run [1 ,2 ]
Dhall, Deepti [3 ]
Nissen, Nicholas N. [4 ,5 ]
Zhou, Cuiqi [6 ]
Ren, Song-Guang [6 ]
机构
[1] Univ Calif Los Angeles, Cedars Sinai Med Ctr, David Geffen Sch Med, Div Endocrinol, Los Angeles, CA 90048 USA
[2] Univ Calif Los Angeles, Cedars Sinai Med Ctr, David Geffen Sch Med, Carcinoid & Neuroendocrine Tumor Ctr, Los Angeles, CA 90048 USA
[3] Cedars Sinai Med Ctr, Dept Pathol, Los Angeles, CA 90048 USA
[4] Univ Calif Los Angeles, Cedars Sinai Med Ctr, Dept Surg, Los Angeles, CA 90048 USA
[5] Univ Calif Los Angeles, David Geffen Sch Med, Dept Surg, Los Angeles, CA 90095 USA
[6] Cedars Sinai Med Ctr, Div Endocrinol Diabet & Metab, Los Angeles, CA 90048 USA
来源
PLOS ONE | 2011年 / 6卷 / 08期
基金
美国国家卫生研究院;
关键词
MULTIPLE ENDOCRINE NEOPLASIA; ALPHA-CELL HYPERPLASIA; KNOCKOUT MICE; GLUCOSE-HOMEOSTASIS; PRECURSOR LESIONS; GLYCEMIC CONTROL; TRANSGENIC MICE; T-ANTIGEN; MEN1; GENE;
D O I
10.1371/journal.pone.0023397
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Inhibition of glucagon signaling causes hyperglucagonemia and pancreatic alpha cell hyperplasia in mice. We have recently demonstrated that a patient with an inactivating glucagon receptor mutation (P86S) also exhibits hyperglucagonemia and pancreatic alpha cell hyperplasia but further develops pancreatic neuroendocrine tumors (PNETs). To test the hypothesis that defective glucagon signaling causes PNETs, we studied the pancreata of mice deficient in glucagon receptor (Gcgr(-/-)) from 2 to 12 months, using WT and heterozygous mice as controls. At 2-3 months, Gcgr(-/-) mice exhibited normal islet morphology but the islets were mostly composed of alpha cells. At 5-7 months, dysplastic islets were evident in Gcgr(-/-) mice but absent in WT or heterozygous controls. At 10-12 months, gross PNETs (>= 1 mm) were detected in most Gcgr(-/-) pancreata and micro-PNETs (<1 mm) were found in all (n = 14), whereas the islet morphology remained normal and no PNETs were found in any WT (n = 10) or heterozygous (n = 25) pancreata. Most PNETs in Gcgr(-/-) mice were glucagonomas, but some were non-functioning. No tumors predominantly expressed insulin, pancreatic polypeptide, or somatostatin, although some harbored focal aggregates of tumor cells expressing one of those hormones. The PNETs in Gcgr(-/-) mice were well differentiated and occasionally metastasized to the liver. Menin expression was aberrant in most dysplatic islets and PNETs. Vascular endothelial growth factor (VEGF) was overexpressed in PNET cells and its receptor Flk-1 was found in the abundant blood vessels or blood islands inside the tumors. We conclude that defective glucagon signaling causes PNETs in the Gcgr(-/-) mice, which may be used as a model of human PNETs. Our results further suggest that completely inhibiting glucagon signaling may not be a safe approach to treat diabetes.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Tubuloglomerular feedback in adenosine A1 receptor-deficient mice
    Persson, PB
    AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2001, 281 (05) : R1361 - R1361
  • [32] Male reproductive function is not affected in prolactin receptor-deficient mice
    Binart, N
    Melaine, N
    Pineau, C
    Kercret, H
    Touzalin, AM
    Imbert-Bolloré, P
    Kelly, PA
    Jégou, B
    ENDOCRINOLOGY, 2003, 144 (09) : 3779 - 3782
  • [33] Behavioral profile of CCK2 receptor-deficient mice
    Daugé, V
    Sebret, A
    Beslot, F
    Matsui, T
    Roques, BP
    NEUROPSYCHOPHARMACOLOGY, 2001, 25 (05) : 690 - 698
  • [34] Rewarding effects of ethanol and cocaine in µ opioid receptor-deficient mice
    Axel Becker
    Gisela Grecksch
    Jürgen Kraus
    Horace H. Loh
    Helmut Schroeder
    Volker Höllt
    Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 365 : 296 - 302
  • [35] Immune system development and function in prolactin receptor-deficient mice
    Bouchard, B
    Ormandy, CJ
    Di Santo, JP
    Kelly, PA
    JOURNAL OF IMMUNOLOGY, 1999, 163 (02): : 576 - 582
  • [36] Morphine self-administration in µ-opioid receptor-deficient mice
    Axel Becker
    Gisela Grecksch
    Rudolf Brödemann
    Jürgen Kraus
    Brigitte Peters
    Helmut Schroeder
    Werner Thiemann
    Horace H. Loh
    Volker Höllt
    Naunyn-Schmiedeberg's Archives of Pharmacology, 2000, 361 : 584 - 589
  • [37] Amygdalin ameliorates the progression of atherosclerosis in LDL receptor-deficient mice
    Lv, Jianzhen
    Xiong, Wen
    Lei, Tiantian
    Wang, Hailian
    Sun, Minghan
    Hao, Erwei
    Wang, Zhiping
    Huang, Xiaoqi
    Deng, Shaoping
    Deng, Jiagang
    Wang, Yi
    MOLECULAR MEDICINE REPORTS, 2017, 16 (06) : 8171 - 8179
  • [38] Body weight and fat deposition in prolactin receptor-deficient mice
    Freemark, M
    Fleenor, D
    Driscoll, P
    Binart, N
    Kelly, PA
    ENDOCRINOLOGY, 2001, 142 (02) : 532 - 537
  • [39] REDUCED SACCHARIN PREFERENCE IN CXBK (OPIOID RECEPTOR-DEFICIENT) MICE
    YIRMIYA, R
    LIEBLICH, I
    LIEBESKIND, JC
    BRAIN RESEARCH, 1988, 438 (1-2) : 339 - 342
  • [40] Reduced autoregulatory effectiveness in adenosine 1 receptor-deficient mice
    Hashimoto, S
    Huang, Y
    Briggs, J
    Schnermann, J
    AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2006, 290 (04) : F888 - F891