Sequence-Level Training for Non-Autoregressive Neural Machine Translation

被引:0
|
作者
Shao, Chenze [1 ]
Feng, Yang [1 ]
Zhang, Jinchao [2 ]
Meng, Fandong [2 ]
Zhou, Jie [2 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China
[2] Tencent Inc, WeChat AI, Pattern Recognit Ctr, Shenzhen, Peoples R China
关键词
D O I
10.1162/COLI_a_00421
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, Neural Machine Translation (NMT) has achieved notable results in various translation tasks. However, the word-by-word generation manner determined by the autoregressive mechanism leads to high translation latency of the NMT and restricts its low-latency applications. Non-Autoregressive Neural Machine Translation (NAT) removes the autoregressive mechanism and achieves significant decoding speedup by generating target words independently and simultaneously. Nevertheless, NAT still takes the word-level cross-entropy loss as the training objective, which is not optimal because the output of NAT cannot be properly evaluated due to the multimodality problem. In this article, we propose using sequence-level training objectives to train NAT models, which evaluate the NAT outputs as a whole and correlates well with the real translation quality. First, we propose training NAT models to optimize sequence-level evaluation metrics (e.g., BLEW based on several novel reinforcement algorithms customized for NAT, which outperform the conventional method by reducing the variance of gradient estimation. Second, we introduce a novel training objective for NAT models, which aims to minimize the Bag-of-N-grams (BoN) difference between the model output and the reference sentence. The BoN training objective is differentiable and can be calculated efficiently without doing any approximations. Finally, we apply a three-stage training strategy to combine these two methods to train the NAT model. We validate our approach on four translation tasks (WMT14 EN <-> De, WMT16 EN <-> Ro), which shows that our approach largely outperforms NAT baselines and achieves remarkable performance on all translation tasks. The source code is available at https://github.com/ictnlp/Seq-NAT.
引用
收藏
页码:891 / 925
页数:35
相关论文
共 50 条
  • [1] A Survey of Non-Autoregressive Neural Machine Translation
    Li, Feng
    Chen, Jingxian
    Zhang, Xuejun
    [J]. ELECTRONICS, 2023, 12 (13)
  • [2] Jointly Masked Sequence-to-Sequence Model for Non-Autoregressive Neural Machine Translation
    Guo, Junliang
    Xu, Linli
    Chen, Enhong
    [J]. 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), 2020, : 376 - 385
  • [3] Modeling Coverage for Non-Autoregressive Neural Machine Translation
    Shan, Yong
    Feng, Yang
    Shao, Chenze
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [4] Glancing Transformer for Non-Autoregressive Neural Machine Translation
    Qian, Lihua
    Zhou, Hao
    Bao, Yu
    Wang, Mingxuan
    Qiu, Lin
    Zhang, Weinan
    Yu, Yong
    Li, Lei
    [J]. 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1 (ACL-IJCNLP 2021), 2021, : 1993 - 2003
  • [5] Learning to Rewrite for Non-Autoregressive Neural Machine Translation
    Geng, Xinwei
    Feng, Xiaocheng
    Qin, Bing
    [J]. 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 3297 - 3308
  • [6] Task-Level Curriculum Learning for Non-Autoregressive Neural Machine Translation
    Liu, Jinglin
    Ren, Yi
    Tan, Xu
    Zhang, Chen
    Qin, Tao
    Zhao, Zhou
    Liu, Tie-Yan
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 3861 - 3867
  • [7] Imitation Learning for Non-Autoregressive Neural Machine Translation
    Wei, Bingzhen
    Wang, Mingxuan
    Zhou, Hao
    Lin, Junyang
    Sun, Xu
    [J]. 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 1304 - 1312
  • [8] Uncertainty-aware non-autoregressive neural machine translation
    Liu, Chuanming
    Yu, Jingqi
    [J]. COMPUTER SPEECH AND LANGUAGE, 2023, 78
  • [9] Non-autoregressive neural machine translation with auxiliary representation fusion
    Du, Quan
    Feng, Kai
    Xu, Chen
    Xiao, Tong
    Zhu, Jingbo
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (06) : 7229 - 7239
  • [10] Improving Non-autoregressive Neural Machine Translation with Monolingual Data
    Zhou, Jiawei
    Keung, Phillip
    [J]. 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), 2020, : 1893 - 1898