Improving Non-autoregressive Neural Machine Translation with Monolingual Data

被引:0
|
作者
Zhou, Jiawei [1 ]
Keung, Phillip [2 ]
机构
[1] Harvard Univ, Cambridge, MA 02138 USA
[2] Amazon Inc, Bellevue, WA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Non-autoregressive (NAR) neural machine translation is usually done via knowledge distillation from an autoregressive (AR) model. Under this framework, we leverage large monolingual corpora to improve the NAR model's performance, with the goal of transferring the AR model's generalization ability while preventing overfitting. On top of a strong NAR baseline, our experimental results on the WMT14 En-De and WMT16 En-Ro news translation tasks confirm that monolingual data augmentation consistently improves the performance of the NAR model to approach the teacher AR model's performance, yields comparable or better results than the best non-iterative NAR methods in the literature and helps reduce overfitting in the training process.
引用
收藏
页码:1893 / 1898
页数:6
相关论文
共 50 条
  • [1] A Survey of Non-Autoregressive Neural Machine Translation
    Li, Feng
    Chen, Jingxian
    Zhang, Xuejun
    [J]. ELECTRONICS, 2023, 12 (13)
  • [2] Modeling Coverage for Non-Autoregressive Neural Machine Translation
    Shan, Yong
    Feng, Yang
    Shao, Chenze
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [3] Glancing Transformer for Non-Autoregressive Neural Machine Translation
    Qian, Lihua
    Zhou, Hao
    Bao, Yu
    Wang, Mingxuan
    Qiu, Lin
    Zhang, Weinan
    Yu, Yong
    Li, Lei
    [J]. 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1 (ACL-IJCNLP 2021), 2021, : 1993 - 2003
  • [4] Learning to Rewrite for Non-Autoregressive Neural Machine Translation
    Geng, Xinwei
    Feng, Xiaocheng
    Qin, Bing
    [J]. 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 3297 - 3308
  • [5] Imitation Learning for Non-Autoregressive Neural Machine Translation
    Wei, Bingzhen
    Wang, Mingxuan
    Zhou, Hao
    Lin, Junyang
    Sun, Xu
    [J]. 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 1304 - 1312
  • [6] Uncertainty-aware non-autoregressive neural machine translation
    Liu, Chuanming
    Yu, Jingqi
    [J]. COMPUTER SPEECH AND LANGUAGE, 2023, 78
  • [7] Non-autoregressive neural machine translation with auxiliary representation fusion
    Du, Quan
    Feng, Kai
    Xu, Chen
    Xiao, Tong
    Zhu, Jingbo
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (06) : 7229 - 7239
  • [8] Non-Autoregressive Neural Machine Translation with Enhanced Decoder Input
    Guo, Junliang
    Tan, Xu
    He, Di
    Qin, Tao
    Xu, Linli
    Liu, Tie-Yan
    [J]. THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 3723 - 3730
  • [9] A Survey on Non-Autoregressive Generation for Neural Machine Translation and Beyond
    Xiao, Yisheng
    Wu, Lijun
    Guo, Junliang
    Li, Juntao
    Zhang, Min
    Qin, Tao
    Liu, Tie-Yan
    [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (10) : 11407 - 11427
  • [10] Fully Non-autoregressive Neural Machine Translation: Tricks of the Trade
    Gu, Jiatao
    Kong, Xiang
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 120 - 133