Learning to Rewrite for Non-Autoregressive Neural Machine Translation

被引:0
|
作者
Geng, Xinwei [1 ]
Feng, Xiaocheng [1 ,2 ]
Qin, Bing [1 ,2 ]
机构
[1] Harbin Inst Technol, Harbin, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Non-autoregressive neural machine translation, which decomposes the dependence on previous target tokens from the inputs of the decoder, has achieved impressive inference speedup but at the cost of inferior accuracy. Previous works employ iterative decoding to improve the translation by applying multiple refinement iterations. However, a serious drawback is that these approaches expose the serious weakness in recognizing the erroneous translation pieces. In this paper, we propose an architecture named REWRITENAT to explicitly learn to rewrite the erroneous translation pieces. Specifically, REWRITENAT utilizes a locator module to locate the erroneous ones, which are then revised into the correct ones by a revisor module. Towards keeping the consistency of data distribution with iterative decoding, an iterative training strategy is employed to further improve the capacity of rewriting. Extensive experiments conducted on several widely-used benchmarks show that REWRITENAT can achieve better performance while significantly reducing decoding time, compared with previous iterative decoding strategies. In particular, REWRITENAT can obtain competitive results with autoregressive translation on WMT14 En <-> De, En <-> Fr and WMT16 Ro -> En translation benchmarks(1).
引用
收藏
页码:3297 / 3308
页数:12
相关论文
共 50 条
  • [1] Imitation Learning for Non-Autoregressive Neural Machine Translation
    Wei, Bingzhen
    Wang, Mingxuan
    Zhou, Hao
    Lin, Junyang
    Sun, Xu
    [J]. 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 1304 - 1312
  • [2] A Survey of Non-Autoregressive Neural Machine Translation
    Li, Feng
    Chen, Jingxian
    Zhang, Xuejun
    [J]. ELECTRONICS, 2023, 12 (13)
  • [3] Modeling Coverage for Non-Autoregressive Neural Machine Translation
    Shan, Yong
    Feng, Yang
    Shao, Chenze
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [4] Glancing Transformer for Non-Autoregressive Neural Machine Translation
    Qian, Lihua
    Zhou, Hao
    Bao, Yu
    Wang, Mingxuan
    Qiu, Lin
    Zhang, Weinan
    Yu, Yong
    Li, Lei
    [J]. 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1 (ACL-IJCNLP 2021), 2021, : 1993 - 2003
  • [5] Task-Level Curriculum Learning for Non-Autoregressive Neural Machine Translation
    Liu, Jinglin
    Ren, Yi
    Tan, Xu
    Zhang, Chen
    Qin, Tao
    Zhao, Zhou
    Liu, Tie-Yan
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 3861 - 3867
  • [6] Fine-Tuning by Curriculum Learning for Non-Autoregressive Neural Machine Translation
    Guo, Junliang
    Tan, Xu
    Xu, Linli
    Qin, Tao
    Chen, Enhong
    Liu, Tie-Yan
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 7839 - 7846
  • [7] Uncertainty-aware non-autoregressive neural machine translation
    Liu, Chuanming
    Yu, Jingqi
    [J]. COMPUTER SPEECH AND LANGUAGE, 2023, 78
  • [8] Non-autoregressive neural machine translation with auxiliary representation fusion
    Du, Quan
    Feng, Kai
    Xu, Chen
    Xiao, Tong
    Zhu, Jingbo
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (06) : 7229 - 7239
  • [9] Improving Non-autoregressive Neural Machine Translation with Monolingual Data
    Zhou, Jiawei
    Keung, Phillip
    [J]. 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), 2020, : 1893 - 1898
  • [10] Non-Autoregressive Neural Machine Translation with Enhanced Decoder Input
    Guo, Junliang
    Tan, Xu
    He, Di
    Qin, Tao
    Xu, Linli
    Liu, Tie-Yan
    [J]. THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 3723 - 3730