Imitation Learning for Non-Autoregressive Neural Machine Translation

被引:0
|
作者
Wei, Bingzhen [1 ]
Wang, Mingxuan
Zhou, Hao
Lin, Junyang [1 ,3 ]
Sun, Xu [1 ,2 ]
机构
[1] Peking Univ, Sch EECS, MOE Key Lab Computat Linguist, Beijing, Peoples R China
[2] Peking Univ, Beijing Inst Big Data Res, Deep Learning Lab, Beijing, Peoples R China
[3] Peking Univ, Sch Foreign Languages, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Non-autoregressive translation models (NAT) have achieved impressive inference speedup. A potential issue of the existing NAT algorithms, however, is that the decoding is conducted in parallel, without directly considering previous context. In this paper, we propose an imitation learning framework for non-autoregressive machine translation, which still enjoys the fast translation speed but gives comparable translation performance compared to its auto-regressive counterpart. We conduct experiments on the IWSLT16, WMT14 and WMT16 datasets. Our proposed model achieves a significant speedup over the autoregressive models, while keeping the translation quality comparable to the autoregressive models. By sampling sentence length in parallel at inference time, we achieve the performance of 31.85 BLEU on WMT16 Ro -> En and 30.68 BLEU on IWSLT16 En -> De.
引用
收藏
页码:1304 / 1312
页数:9
相关论文
共 50 条
  • [1] Learning to Rewrite for Non-Autoregressive Neural Machine Translation
    Geng, Xinwei
    Feng, Xiaocheng
    Qin, Bing
    [J]. 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 3297 - 3308
  • [2] A Survey of Non-Autoregressive Neural Machine Translation
    Li, Feng
    Chen, Jingxian
    Zhang, Xuejun
    [J]. ELECTRONICS, 2023, 12 (13)
  • [3] Modeling Coverage for Non-Autoregressive Neural Machine Translation
    Shan, Yong
    Feng, Yang
    Shao, Chenze
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [4] Glancing Transformer for Non-Autoregressive Neural Machine Translation
    Qian, Lihua
    Zhou, Hao
    Bao, Yu
    Wang, Mingxuan
    Qiu, Lin
    Zhang, Weinan
    Yu, Yong
    Li, Lei
    [J]. 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1 (ACL-IJCNLP 2021), 2021, : 1993 - 2003
  • [5] Task-Level Curriculum Learning for Non-Autoregressive Neural Machine Translation
    Liu, Jinglin
    Ren, Yi
    Tan, Xu
    Zhang, Chen
    Qin, Tao
    Zhao, Zhou
    Liu, Tie-Yan
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 3861 - 3867
  • [6] Fine-Tuning by Curriculum Learning for Non-Autoregressive Neural Machine Translation
    Guo, Junliang
    Tan, Xu
    Xu, Linli
    Qin, Tao
    Chen, Enhong
    Liu, Tie-Yan
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 7839 - 7846
  • [7] Uncertainty-aware non-autoregressive neural machine translation
    Liu, Chuanming
    Yu, Jingqi
    [J]. COMPUTER SPEECH AND LANGUAGE, 2023, 78
  • [8] Non-autoregressive neural machine translation with auxiliary representation fusion
    Du, Quan
    Feng, Kai
    Xu, Chen
    Xiao, Tong
    Zhu, Jingbo
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (06) : 7229 - 7239
  • [9] Improving Non-autoregressive Neural Machine Translation with Monolingual Data
    Zhou, Jiawei
    Keung, Phillip
    [J]. 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), 2020, : 1893 - 1898
  • [10] Non-Autoregressive Neural Machine Translation with Enhanced Decoder Input
    Guo, Junliang
    Tan, Xu
    He, Di
    Qin, Tao
    Xu, Linli
    Liu, Tie-Yan
    [J]. THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 3723 - 3730