Rate of Convergence for Discretization of Integrals with Respect to Fractional Brownian Motion

被引:7
|
作者
Azmoodeh, Ehsan [1 ]
Viitasaari, Lauri [2 ]
机构
[1] Univ Luxembourg, Fac Sci, Technol & Commun, Luxembourg, Luxembourg
[2] Aalto Univ, Sch Sci, Dept Math & Syst Anal, Espoo, Finland
关键词
Fractional Brownian motion; Stochastic integral; Discretization; Rate of convergence;
D O I
10.1007/s10959-013-0495-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, a uniform discretization of stochastic integrals integral(1)(0)integral'-(B-t)dB(t), where denotes the fractional Brownian motion with Hurst parameter , is considered for a large class of convex functions . In Azmoodeh et al. (Stat Decis 27:129-143, 2010), for any convex function , the almost sure convergence of uniform discretization to such stochastic integral is proved. Here, we prove -convergence of uniform discretization to stochastic integral. In addition, we obtain a rate of convergence. It turns out that the rate of convergence can be brought arbitrarily close to H = 1/2.
引用
收藏
页码:396 / 422
页数:27
相关论文
共 50 条
  • [21] Approximation of a Wiener process by integrals with respect to the fractional Brownian motion of power function of a given exponent
    Banna, O. L.
    Mishura, Yu. S.
    Shklyar, S. V.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2014, 90 : 13 - 21
  • [22] Besov Regularity of Stochastic Integrals with Respect to the Fractional Brownian Motion with Parameter H > 1/2
    David Nualart
    Youssef Ouknine
    Journal of Theoretical Probability, 2003, 16 : 451 - 470
  • [23] Integration with Respect to the Hermitian Fractional Brownian Motion
    Deya, Aurelien
    JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (01) : 295 - 318
  • [24] On the Wiener integral with respect to the fractional Brownian motion
    Tudor, C
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2002, 8 (01): : 97 - 106
  • [25] Stochastic integration with respect to fractional Brownian motion
    Carmona, P
    Coutin, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (03): : 231 - 236
  • [26] Stochastic integration with respect to fractional Brownian motion
    Carmona, P
    Coutin, L
    Montseny, G
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (01): : 27 - 68
  • [27] Integration with Respect to the Hermitian Fractional Brownian Motion
    Aurélien Deya
    Journal of Theoretical Probability, 2020, 33 : 295 - 318
  • [28] Wiener integration with respect to fractional brownian motion
    Mishura, Yuliya S.
    STOCHASTIC CALCULUS FOR FRACTIONAL BROWNIAN MOTION AND RELATED PROCESSES, 2008, 1929 : 1 - +
  • [29] Path integrals for fractional Brownian motion and fractional Gaussian noise
    Meerson, Baruch
    Benichou, Olivier
    Oshanin, Gleb
    PHYSICAL REVIEW E, 2022, 106 (06)
  • [30] A strong convergence to the tempered fractional Brownian motion
    Shen, Guangjun
    Xia, Liangwen
    Zhu, Dongjin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (08) : 4103 - 4118