Machine learning algorithms for fault diagnosis in analog circuits

被引:0
|
作者
Rajan, V [1 ]
Ying, J [1 ]
Chakrabarty, S [1 ]
Pattipati, K [1 ]
机构
[1] Univ Connecticut, Dept Elect & Syst Engn, U157, Storrs, CT 06269 USA
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigate and systematically evaluate two machine learning algorithms for analog fault detection and isolation: (1) Restricted Coloumb Energy (RCE) Neural Network, and (2) Learning Vector Quantization (LVQ). The RCE and LVQ models excel at recognition and classification types of problems. In order to evaluate the efficacy of the two learning algorithms, we have developed a software tool, termed Virtual Test-Bench (VTB), which generates diagnostic information for analog circuits represented by SPICE descriptions. The RCE and LVQ models render themselves more naturally to on-line monitoring, where measurement data from various sensors is continuously available. The effectiveness of RCE and LVQ is demonstrated on illustrative example circuits.
引用
收藏
页码:1874 / 1879
页数:6
相关论文
共 50 条
  • [41] Fault Diagnosis of Support Vector Machine Analog Circuits Based on Improved Particle Swarm Optimization
    Yang, Junping
    Song, Qinghua
    [J]. JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2023, 18 (06) : 743 - 752
  • [42] Symbolic techniques in parametric fault diagnosis of analog circuits
    Grasso, F
    Luchetta, A
    Manetti, S
    Piccirilli, MC
    [J]. BEC 2002: PROCEEDINGS OF THE 8TH BIENNIAL BALTIC ELECTRONIC CONFERENCE, 2002, : 271 - 274
  • [43] COMPLEX NETWORK APPLICATION IN FAULT DIAGNOSIS OF ANALOG CIRCUITS
    Peng, Minfang
    Wang, Jiajia
    Tse, Chi K.
    Shen, Meie
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (05): : 1323 - 1330
  • [44] New Aspects of Fault Diagnosis of Nonlinear Analog Circuits
    Tadeusiewicz, Michal
    Halgas, Stanislaw
    Kuczynski, Andrzej
    [J]. INTERNATIONAL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2015, 61 (01) : 83 - 93
  • [45] Evolutionary stimuli selection for fault diagnosis in analog circuits
    Korzybski, Marek
    Ossowski, Marek
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (10): : 167 - 170
  • [46] The Fault Diagnosis of Analog Circuits Based on Extension Theory
    Wang, Meng-Hui
    Chung, Yu-Kuo
    Sung, Wen-Tsai
    [J]. EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PROCEEDINGS, 2009, 5754 : 735 - 744
  • [47] Hardware for Fault Diagnosis of Analog Circuits by Multitest Method
    Afanassyev, Denis
    Rabyk, Vasyl
    [J]. 2016 13TH INTERNATIONAL CONFERENCE ON MODERN PROBLEMS OF RADIO ENGINEERING, TELECOMMUNICATIONS AND COMPUTER SCIENCE (TCSET), 2016, : 589 - 591
  • [48] Fault Diagnosis in Analog Circuits Using Swarm Intelligence
    Nedjah, Nadia
    Galindo, Jalber Dinelli Luna
    Mourelle, Luiza de Macedo
    de Oliveira, Fernanda Duarte Vilela Reis
    [J]. BIOMIMETICS, 2023, 8 (05)
  • [49] FAULT DIAGNOSIS IN ANALOG ELECTRONIC CIRCUITS - THE SVM APPROACH
    Grzechca, Damian
    Rutkowski, Jerzy
    [J]. METROLOGY AND MEASUREMENT SYSTEMS, 2009, 16 (04): : 583 - 597
  • [50] Ensembles of neural networks for fault diagnosis in analog circuits
    El-Gamal, M. A.
    Mohamed, M. D. A.
    [J]. JOURNAL OF ELECTRONIC TESTING-THEORY AND APPLICATIONS, 2007, 23 (04): : 323 - 339