Amplitude modulation atomic force microscopy based on higher flexural modes

被引:1
|
作者
Zhou, Xilong [1 ,2 ]
Zhuo, Rongshu [1 ,2 ]
Wen, Pengfei [1 ,2 ]
Li, Faxin [3 ]
机构
[1] Wuhan Univ Technol, Sch Sci, Dept Engn Struct & Mech, Wuhan 430070, Hubei, Peoples R China
[2] Wuhan Univ Technol, Hubei Key Lab Theory & Applicat Adv Mat Mech, Wuhan 430070, Hubei, Peoples R China
[3] Peking Univ, Coll Engn, Beijing 100871, Peoples R China
来源
AIP ADVANCES | 2017年 / 7卷 / 12期
基金
中国国家自然科学基金;
关键词
TAPPING-MODE; ENERGY-DISSIPATION; VIBRATING TIP; PHASE-SHIFT; CONTACT; SURFACE; SYSTEM;
D O I
10.1063/1.5004732
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, amplitude modulation atomic force microscopy (AM-AFM) based on the higher flexural modes of the microcantilever is investigated by a numerical approach. The amplitude-distance and phase-distance curves for the first four flexural modes are obtained and compared. The dependence of phase on elastic modulus and viscosity of the sample is analyzed. Results show that a higher flexural mode yields a larger amplitude and phase in the repulsive regime and reduces the bistability, but causes a larger sample deformation and peak repulsive force. Compared to that of a lower flexural mode, the phase of a higher flexural mode provides higher sensitivity to viscosity variation for relatively large moduli. (c) 2017 Author(s).
引用
收藏
页数:5
相关论文
共 50 条
  • [1] The Control of Higher Modes in Atomic Force Microscopy
    Karvinen, K. S.
    Moheimani, S. O. R.
    [J]. 2014 INTERNATIONAL CONFERENCE ON NANOSCIENCE AND NANOTECHNOLOGY (ICONN), 2014, : 65 - 66
  • [2] Automated force controller for amplitude modulation atomic force microscopy
    Miyagi, Atsushi
    Scheuring, Simon
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (05):
  • [3] Dynamic spring constants for higher flexural modes of cantilever plates with applications to atomic force microscopy
    Haehner, Georg
    [J]. ULTRAMICROSCOPY, 2010, 110 (07) : 801 - 806
  • [4] Using higher flexural modes in non-contact force microscopy
    Pfeiffer, O
    Loppacher, C
    Wattinger, C
    Bammerlin, M
    Gysin, U
    Guggisberg, M
    Rast, S
    Bennewitz, R
    Meyer, E
    Güntherodt, HJ
    [J]. APPLIED SURFACE SCIENCE, 2000, 157 (04) : 337 - 342
  • [5] Spatial horizons in amplitude and frequency modulation atomic force microscopy
    Font, Josep
    Santos, Sergio
    Barcons, Victor
    Thomson, Neil H.
    Verdaguer, Albert
    Chiesa, Matteo
    [J]. NANOSCALE, 2012, 4 (07) : 2463 - 2469
  • [6] Molecular dynamics simulation of amplitude modulation atomic force microscopy
    Hu, Xiaoli
    Egberts, Philip
    Dong, Yalin
    Martini, Ashlie
    [J]. NANOTECHNOLOGY, 2015, 26 (23)
  • [7] General theory of amplitude-modulation atomic force microscopy
    Lee, Manhee
    Jhe, Wonho
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (03)
  • [8] Determination of electrostatic force and its characteristics based on phase difference by amplitude modulation atomic force microscopy
    Kesheng Wang
    Jia Cheng
    Shiji Yao
    Yijia Lu
    Linhong Ji
    Dengfeng Xu
    [J]. Nanoscale Research Letters, 2016, 11
  • [9] Determination of electrostatic force and its characteristics based on phase difference by amplitude modulation atomic force microscopy
    Wang, Kesheng
    Cheng, Jia
    Yao, Shiji
    Lu, Yijia
    Ji, Linhong
    Xu, Dengfeng
    [J]. NANOSCALE RESEARCH LETTERS, 2016, 11
  • [10] Highly Sensitive Electrostatic Force Detection Using Small Amplitude Frequency-Modulation Atomic Force Microscopy in the Second Flexural Mode
    Nishi, Keisuke
    Hosokawa, Yoshihiro
    Kobayashi, Kei
    Matsushige, Kazumi
    Yamada, Hirofumi
    [J]. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY, 2011, 9 : 146 - 152