Amplitude modulation atomic force microscopy based on higher flexural modes

被引:1
|
作者
Zhou, Xilong [1 ,2 ]
Zhuo, Rongshu [1 ,2 ]
Wen, Pengfei [1 ,2 ]
Li, Faxin [3 ]
机构
[1] Wuhan Univ Technol, Sch Sci, Dept Engn Struct & Mech, Wuhan 430070, Hubei, Peoples R China
[2] Wuhan Univ Technol, Hubei Key Lab Theory & Applicat Adv Mat Mech, Wuhan 430070, Hubei, Peoples R China
[3] Peking Univ, Coll Engn, Beijing 100871, Peoples R China
来源
AIP ADVANCES | 2017年 / 7卷 / 12期
基金
中国国家自然科学基金;
关键词
TAPPING-MODE; ENERGY-DISSIPATION; VIBRATING TIP; PHASE-SHIFT; CONTACT; SURFACE; SYSTEM;
D O I
10.1063/1.5004732
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, amplitude modulation atomic force microscopy (AM-AFM) based on the higher flexural modes of the microcantilever is investigated by a numerical approach. The amplitude-distance and phase-distance curves for the first four flexural modes are obtained and compared. The dependence of phase on elastic modulus and viscosity of the sample is analyzed. Results show that a higher flexural mode yields a larger amplitude and phase in the repulsive regime and reduces the bistability, but causes a larger sample deformation and peak repulsive force. Compared to that of a lower flexural mode, the phase of a higher flexural mode provides higher sensitivity to viscosity variation for relatively large moduli. (c) 2017 Author(s).
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Ultrasonic modes in atomic force microscopy
    Kopycinska-Müller, M
    Reinstädtler, M
    Rabe, U
    Caron, A
    Hirsekorn, S
    Arnold, W
    [J]. ACOUSTICAL IMAGING, VOL 27, 2004, 27 : 699 - 706
  • [32] Special cantilever geometry for the access of higher oscillation modes in atomic force microscopy
    Sadewasser, S.
    Villanueva, G.
    Plaza, J. A.
    [J]. APPLIED PHYSICS LETTERS, 2006, 89 (03)
  • [33] A Novel Method to Reconstruct the Force Curve by Higher Harmonics of the First Two Flexural Modes in Frequency Modulation Atomic Force Microscope (FM-AFM)
    Zhang, Suoxin
    Qian, Jianqiang
    Li, Yingzi
    Zhang, Yingxu
    Wang, Zhenyu
    [J]. MICROSCOPY AND MICROANALYSIS, 2018, 24 (03) : 256 - 263
  • [34] Lateral force modulation atomic force microscopy
    Yamanaka, K
    [J]. JOURNAL OF JAPANESE SOCIETY OF TRIBOLOGISTS, 2001, 46 (11) : 868 - 874
  • [35] Amplitude, deformation and phase shift in amplitude modulation atomic force microscopy:: a numerical study for compliant materials
    San Paulo, A
    García, R
    [J]. SURFACE SCIENCE, 2001, 471 (1-3) : 71 - 79
  • [36] Nanoscale optical imaging with photoinduced force microscopy in heterodyne amplitude modulation and heterodyne frequency modulation modes
    Yamanishi, Junsuke
    Li, Yan Jun
    Naitoh, Yoshitaka
    Sugawara, Yasuhiro
    [J]. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2022, 52
  • [37] Imaging of flexural and torsional resonance modes of atomic force microscopy cantilevers using optical interferometry
    Reinstaedtler, M
    Rabe, U
    Scherer, V
    Turner, JA
    Arnold, W
    [J]. SURFACE SCIENCE, 2003, 532 : 1152 - 1158
  • [38] Direct Design of Closed-loop Demodulators for Amplitude Modulation Atomic Force Microscopy
    Ruppert, Michael G.
    Harcombe, David M.
    Moore, Steven, I
    Fleming, Andrew J.
    [J]. 2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 4336 - 4341
  • [39] Tip radius preservation for high resolution imaging in amplitude modulation atomic force microscopy
    Ramos, Jorge R.
    [J]. APPLIED PHYSICS LETTERS, 2014, 105 (04)
  • [40] Theory of phase-modulation atomic force microscopy with constant-oscillation amplitude
    Hoelscher, Hendrik
    [J]. JOURNAL OF APPLIED PHYSICS, 2008, 103 (06)