A bootstrap recipe for post-model-selection inference under linear regression models

被引:4
|
作者
Lee, S. M. S. [1 ]
Wu, Y. [2 ]
机构
[1] Univ Hong Kong, Dept Stat & Actuarial Sci, Pokfulam, Hong Kong, Peoples R China
[2] Univ Waterloo, Dept Stat & Actuarial Sci, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
关键词
Bootstrap; Least squares estimator; Post-model-selection; Regression; LEAST-SQUARES; CONFIDENCE-INTERVALS; VARIABLE SELECTION; LASSO;
D O I
10.1093/biomet/asy046
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a general bootstrap recipe for estimating the distributions of post-model-selection least squares estimators under a linear regression model. The recipe constrains residual bootstrapping within the most parsimonious, approximately correct, models to yield a distribution estimator which is consistent provided any wrong candidate model is sufficiently separated from the approximately correct ones. Our theory applies to a broad class of model selection methods based on information criteria or sparse estimation. The empirical performance of our procedure is illustrated with simulated data.
引用
收藏
页码:873 / 890
页数:18
相关论文
共 50 条
  • [21] INFERENCE AFTER MODEL AVERAGING IN LINEAR REGRESSION MODELS
    Zhang, Xinyu
    Liu, Chu-An
    [J]. ECONOMETRIC THEORY, 2019, 35 (04) : 816 - 841
  • [22] VALID CONFIDENCE INTERVALS FOR POST-MODEL-SELECTION PREDICTORS
    Bachoc, Francois
    Leeb, Hannes
    Potscher, Benedikt M.
    [J]. ANNALS OF STATISTICS, 2019, 47 (03): : 1475 - 1504
  • [23] Bootstrap Inference Longitudinal Semiparametric Regression Model
    Pane, Rahmawati
    Otok, Bambang Widjanarko
    Zain, Ismaini
    Budiantara, I. Nyoman
    [J]. PROCEEDINGS OF THE 7TH SEAMS UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2015: ENHANCING THE ROLE OF MATHEMATICS IN INTERDISCIPLINARY RESEARCH, 2016, 1707
  • [24] THE BOOTSTRAP-BASED SELECTION CRITERIA: AN OPTIMAL CHOICE FOR MODEL SELECTION IN LINEAR REGRESSION
    Shang, Junfeng
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2010, 14 (02) : 173 - 189
  • [25] THE IMPACT OF MODEL SELECTION ON INFERENCE IN LINEAR-REGRESSION - REPLY
    HURVICH, CM
    TSAI, CL
    [J]. AMERICAN STATISTICIAN, 1991, 45 (02): : 172 - 172
  • [26] Pitfalls of post-model-selection testing: experimental quantification
    Demetrescu, Matei
    Hassler, Uwe
    Kuzin, Vladimir
    [J]. EMPIRICAL ECONOMICS, 2011, 40 (02) : 359 - 372
  • [27] UNIFORMLY VALID CONFIDENCE INTERVALS POST-MODEL-SELECTION
    Bachoc, Francois
    Preinerstorfer, David
    Steinberger, Lukas
    [J]. ANNALS OF STATISTICS, 2020, 48 (01): : 440 - 463
  • [28] Post-selection inference in regression models for group testing data
    Shen, Qinyan
    Gregory, Karl
    Huang, Xianzheng
    [J]. BIOMETRICS, 2024, 80 (03)
  • [29] BOOTSTRAP TOLERANCE INTERVALS FOR LINEAR REGRESSION MODELS
    Abdel-Karim, Amany Hassan
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2023, 87 (02) : 139 - 159
  • [30] Bootstrap Tests for Overidentification in Linear Regression Models
    Davidson, Russell
    MacKinnon, James G.
    [J]. ECONOMETRICS, 2015, 3 (04): : 825 - 863