Post-selection inference in regression models for group testing data

被引:0
|
作者
Shen, Qinyan [1 ]
Gregory, Karl [1 ]
Huang, Xianzheng [1 ]
机构
[1] Univ South Carolina, Dept Stat, 219 LeConte,1523 Greene St, Columbia, SC 29208 USA
关键词
confidence intervals; EM algorithm; individual testing; LASSO; variable selection; VALID CONFIDENCE-INTERVALS;
D O I
10.1093/biomtc/ujae101
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We develop a methodology for valid inference after variable selection in logistic regression when the responses are partially observed, that is, when one observes a set of error-prone testing outcomes instead of the true values of the responses. Aiming at selecting important covariates while accounting for missing information in the response data, we apply the expectation-maximization algorithm to compute maximum likelihood estimators subject to LASSO penalization. Subsequent to variable selection, we make inferences on the selected covariate effects by extending post-selection inference methodology based on the polyhedral lemma. Empirical evidence from our extensive simulation study suggests that our post-selection inference results are more reliable than those from naive inference methods that use the same data to perform variable selection and inference without adjusting for variable selection.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] On Post-selection Inference in A/B Testing
    Deng, Alex
    Li, Yicheng
    Lu, Jiannan
    Ramamurthy, Vivek
    [J]. KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 2743 - 2752
  • [2] Exact Post-Selection Inference for Sequential Regression Procedures
    Tibshirani, Ryan J.
    Taylor, Jonathan
    Lockhart, Richard
    Tibshirani, Robert
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (514) : 600 - 614
  • [3] Post-Selection Inference
    Kuchibhotla, Arun K.
    Kolassa, John E.
    Kuffner, Todd A.
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, 2022, 9 : 505 - 527
  • [4] VALID POST-SELECTION INFERENCE
    Berk, Richard
    Brown, Lawrence
    Buja, Andreas
    Zhang, Kai
    Zhao, Linda
    [J]. ANNALS OF STATISTICS, 2013, 41 (02): : 802 - 837
  • [5] Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models
    Belloni, Alexandre
    Chernozhukov, Victor
    Kato, Kengo
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (526) : 749 - 758
  • [6] VALID POST-SELECTION INFERENCE IN MODEL-FREE LINEAR REGRESSION
    Kuchibhotla, Arun K.
    Brown, Lawrence D.
    Buja, Andreas
    Cai, Junhui
    George, Edward, I
    Zhao, Linda H.
    [J]. ANNALS OF STATISTICS, 2020, 48 (05): : 2953 - 2981
  • [7] Post-selection inference for 1-penalized likelihood models
    Taylor, Jonathan
    Tibshirani, Robert
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2018, 46 (01): : 41 - 61
  • [8] Post-Selection Inference for Generalized Linear Models With Many Controls
    Belloni, Alexandre
    Chernozhukov, Victor
    Wei, Ying
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2016, 34 (04) : 606 - 619
  • [9] POST-SELECTION INFERENCE IN THREE-DIMENSIONAL PANEL DATA
    Chiang, Harold D.
    Rodrigue, Joel
    Sasaki, Yuya
    [J]. ECONOMETRIC THEORY, 2023, 39 (03) : 623 - 658
  • [10] Splitting strategies for post-selection inference
    Rasines, D. Garcia
    Young, G. A.
    [J]. BIOMETRIKA, 2023, 110 (03) : 597 - 614