Post-selection inference in regression models for group testing data

被引:0
|
作者
Shen, Qinyan [1 ]
Gregory, Karl [1 ]
Huang, Xianzheng [1 ]
机构
[1] Univ South Carolina, Dept Stat, 219 LeConte,1523 Greene St, Columbia, SC 29208 USA
关键词
confidence intervals; EM algorithm; individual testing; LASSO; variable selection; VALID CONFIDENCE-INTERVALS;
D O I
10.1093/biomtc/ujae101
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We develop a methodology for valid inference after variable selection in logistic regression when the responses are partially observed, that is, when one observes a set of error-prone testing outcomes instead of the true values of the responses. Aiming at selecting important covariates while accounting for missing information in the response data, we apply the expectation-maximization algorithm to compute maximum likelihood estimators subject to LASSO penalization. Subsequent to variable selection, we make inferences on the selected covariate effects by extending post-selection inference methodology based on the polyhedral lemma. Empirical evidence from our extensive simulation study suggests that our post-selection inference results are more reliable than those from naive inference methods that use the same data to perform variable selection and inference without adjusting for variable selection.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Regression models for group testing data with pool dilution effects
    McMahan, Christopher S.
    Tebbs, Joshua M.
    Bilder, Christopher R.
    [J]. BIOSTATISTICS, 2013, 14 (02) : 284 - 298
  • [42] The post-selection operator current
    Gray, John E.
    Addison, Stephen R.
    [J]. QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2018, 5 (03) : 399 - 412
  • [43] A bootstrap recipe for post-model-selection inference under linear regression models
    Lee, S. M. S.
    Wu, Y.
    [J]. BIOMETRIKA, 2018, 105 (04) : 873 - 890
  • [44] Causal inference with invalid instruments: post-selection problems and a solution using searching and sampling
    Guo, Zijian
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2023, 85 (03) : 959 - 985
  • [45] An Analysis of Post-selection in Automatic Configuration
    Yuan, Zhi
    Stuetzle, Thomas
    de Oca, Marco A. Montes
    Lau, Hoong Chuin
    Birattari, Mauro
    [J]. GECCO'13: PROCEEDINGS OF THE 2013 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2013, : 1557 - 1564
  • [46] Automatic post-selection by ancillae thermalization
    Wright, L.
    Barratt, F.
    Dborin, J.
    Booth, G. H.
    Green, A. G.
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [47] Semiparametric group testing regression models
    Wang, D.
    McMahan, C. S.
    Gallagher, C. M.
    Kulasekera, K. B.
    [J]. BIOMETRIKA, 2014, 101 (03) : 587 - 598
  • [48] Consistent covariate selection and post model selection inference in semiparametric regression
    Bunea, F
    [J]. ANNALS OF STATISTICS, 2004, 32 (03): : 898 - 927
  • [49] Testing Inference from Logistic Regression Models in Data with Unobserved Heterogeneity at Cluster Levels
    Ayis, Salma
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2009, 38 (06) : 1202 - 1211
  • [50] On overfitting and post-selection uncertainty assessments
    Hong, L.
    Kuffner, T. A.
    Martin, R.
    [J]. BIOMETRIKA, 2018, 105 (01) : 221 - 224