UNIFORMLY VALID CONFIDENCE INTERVALS POST-MODEL-SELECTION

被引:20
|
作者
Bachoc, Francois [1 ]
Preinerstorfer, David [2 ]
Steinberger, Lukas [3 ]
机构
[1] Univ Paul Sabatier, Inst Math Toulouse, Toulouse, France
[2] Univ Libre Bruxelles, ECARES, Brussels, Belgium
[3] Univ Freiburg, Dept Math Stochast, Freiburg, Germany
来源
ANNALS OF STATISTICS | 2020年 / 48卷 / 01期
基金
奥地利科学基金会; 新加坡国家研究基金会;
关键词
Inference post-model-selection; uniform asymptotic inference; regression; MAXIMUM-LIKELIHOOD-ESTIMATION; INFERENCE; ASYMPTOTICS; ESTIMATORS; REGRESSION;
D O I
10.1214/19-AOS1815
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We suggest general methods to construct asymptotically uniformly valid confidence intervals post-model-selection. The constructions are based on principles recently proposed by Berk et al. (Ann. Statist. 41 (2013) 802-837). In particular, the candidate models used can be misspecified, the target of inference is model-specific, and coverage is guaranteed for any data-driven model selection procedure. After developing a general theory, we apply our methods to practically important situations where the candidate set of models, from which a working model is selected, consists of fixed design homoskedastic or heteroskedastic linear models, or of binary regression models with general link functions. In an extensive simulation study, we find that the proposed confidence intervals perform remarkably well, even when compared to existing methods that are tailored only for specific model selection procedures.
引用
收藏
页码:440 / 463
页数:24
相关论文
共 50 条
  • [1] VALID CONFIDENCE INTERVALS FOR POST-MODEL-SELECTION PREDICTORS
    Bachoc, Francois
    Leeb, Hannes
    Potscher, Benedikt M.
    [J]. ANNALS OF STATISTICS, 2019, 47 (03): : 1475 - 1504
  • [2] On Various Confidence Intervals Post-Model-Selection
    Leeb, Hannes
    Poetscher, Benedikt M.
    Ewald, Karl
    [J]. STATISTICAL SCIENCE, 2015, 30 (02) : 216 - 227
  • [3] On the Length of Post-Model-Selection Confidence Intervals Conditional on Polyhedral Constraints
    Kivaranovic, Danijel
    Leeb, Hannes
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (534) : 845 - 857
  • [4] Post-Model-Selection Prediction Intervals for Generalized Linear Models
    Dustin, Dean
    Clarke, Bertrand
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2024,
  • [5] Valid confidence intervals in regression after variable selection
    Kabaila, P
    [J]. ECONOMETRIC THEORY, 1998, 14 (04) : 463 - 482
  • [6] Bayesian Post-Model-Selection Estimation
    Harel, Nadav
    Routtenberg, Tirza
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 175 - 179
  • [7] Efficient and adaptive post-model-selection estimators
    Bühlmann, P
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 79 (01) : 1 - 9
  • [8] Post-Model-Selection Method for Density Estimation
    Wojtys, Malgorzata
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (17) : 3082 - 3098
  • [9] Pitfalls of post-model-selection testing: experimental quantification
    Matei Demetrescu
    Uwe Hassler
    Vladimir Kuzin
    [J]. Empirical Economics, 2011, 40 : 359 - 372
  • [10] Pitfalls of post-model-selection testing: experimental quantification
    Demetrescu, Matei
    Hassler, Uwe
    Kuzin, Vladimir
    [J]. EMPIRICAL ECONOMICS, 2011, 40 (02) : 359 - 372