Frolicher-Nijenhuis cohomology on G2- and Spin(7)-manifolds

被引:1
|
作者
Kawai, Kotaro [1 ]
Hong Van Le [2 ]
Schwachhoefer, Lorenz [3 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
[2] CAS, Inst Math, Zitna 25, Prague 11567 1, Czech Republic
[3] TU Dortmund Univ, Fak Math, Vogelpothsweg 87, D-44221 Dortmund, Germany
关键词
Special holonomy; G(2)-manifold; Spin(7)-manifold; Frolicher-Nijenhuis bracket; cohomology invariant; METRICS;
D O I
10.1142/S0129167X18500751
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that a parallel differential form Psi of even degree on a Riemannian manifold allows to define a natural differential both on Omega* (M) and Omega*(M,T M), defined via the Rolicher-Nijenhuis bracket. For instance, on a Kahler manifold, these operators are the complex differential and the Dolbeault differential, respectively. We investigate this construction when taking the differential with respect to the canonical parallel 4-form on a G(2)- and Spin(7)-manifold, respectively. We calculate the cohomology groups of Omega*(M) and give a partial description of the cohomology of Omega*(M,TM).
引用
收藏
页数:36
相关论文
共 50 条
  • [1] The Frolicher-Nijenhuis bracket and the geometry of G2-and Spin(7)-manifolds
    Kawai, Kotaro
    Hong Van Le
    Schwachhoefer, Lorenz
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (02) : 411 - 432
  • [2] Integrable hierarchies, Frolicher-Nijenhuis bicomplexes and Lauricella bi-flat F-manifolds
    Lorenzoni, Paolo
    Perletti, Sara
    NONLINEARITY, 2023, 36 (12) : 6925 - 6990
  • [3] Killing forms on G2- and Spin7-manifolds
    Semmelmann, Uwe
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (09) : 1752 - 1766
  • [4] Dolbeault-type complexes on G2- and Spin(7)-manifolds
    Zhang, Xue
    MANUSCRIPTA MATHEMATICA, 2023, 172 (3-4) : 685 - 703
  • [5] CR-twistor spaces over manifolds with G2- and Spin(7)-structures
    Fiorenza, Domenico
    Van Le, Hong
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (04) : 1931 - 1953
  • [6] The conformal-Killing equation on G2- and Spin7-structures
    David, Liana
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (06) : 1070 - 1078
  • [7] Fluxes in M-theory on 7-manifolds:: G2-, Su(3)- and Su(2)-structures
    Behrndt, K
    Jeschek, C
    MATHEMATICAL, THEORETICAL AND PHENOMENOLOGICAL CHALLENGES BEYOND THE STANDARD MODEL: PERSPECTIVES OF THE BALKAN COLLABORATIONS, 2005, : 16 - 31
  • [8] Einstein Warped G2 and Spin(7) Manifolds
    Manero, Victor
    Ugarte, Luis
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 369 (02) : 637 - 673
  • [9] Geometric structures on G2 and Spin(7)-manifolds
    Lee, Jae-Hyouk
    Leung, Naichung Conan
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 13 (01) : 1 - 31
  • [10] Einstein Warped G2 and Spin(7) Manifolds
    Víctor Manero
    Luis Ugarte
    Communications in Mathematical Physics, 2019, 369 : 637 - 673