Killing forms on G2- and Spin7-manifolds

被引:14
|
作者
Semmelmann, Uwe [1 ]
机构
[1] Univ Hamburg, Fachbereich Math, D-20146 Hamburg, Germany
关键词
special holonomy manifolds; killing forms;
D O I
10.1016/j.geomphys.2005.10.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Killing forms on Riemannian manifolds are differential forms whose covariant derivative is totally skew-symmetric. We prove that on a compact manifold with holonomy G(2) or Spin(7) any Killing form has to be parallel. The main tool is a universal Weitzenbock formula. We show, how such a formula can be obtained for any given holonomy group and any representation defining a vector bundle. (c) 2005 Published by Elsevier B.V.
引用
收藏
页码:1752 / 1766
页数:15
相关论文
共 50 条
  • [1] Dolbeault-type complexes on G2- and Spin(7)-manifolds
    Zhang, Xue
    MANUSCRIPTA MATHEMATICA, 2023, 172 (3-4) : 685 - 703
  • [2] Frolicher-Nijenhuis cohomology on G2- and Spin(7)-manifolds
    Kawai, Kotaro
    Hong Van Le
    Schwachhoefer, Lorenz
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (12)
  • [3] The conformal-Killing equation on G2- and Spin7-structures
    David, Liana
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (06) : 1070 - 1078
  • [4] CR-twistor spaces over manifolds with G2- and Spin(7)-structures
    Fiorenza, Domenico
    Van Le, Hong
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (04) : 1931 - 1953
  • [5] Fluxes in M-theory on 7-manifolds:: G2-, Su(3)- and Su(2)-structures
    Behrndt, K
    Jeschek, C
    MATHEMATICAL, THEORETICAL AND PHENOMENOLOGICAL CHALLENGES BEYOND THE STANDARD MODEL: PERSPECTIVES OF THE BALKAN COLLABORATIONS, 2005, : 16 - 31
  • [6] Einstein Warped G2 and Spin(7) Manifolds
    Manero, Victor
    Ugarte, Luis
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 369 (02) : 637 - 673
  • [7] Geometric structures on G2 and Spin(7)-manifolds
    Lee, Jae-Hyouk
    Leung, Naichung Conan
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 13 (01) : 1 - 31
  • [8] Einstein Warped G2 and Spin(7) Manifolds
    Víctor Manero
    Luis Ugarte
    Communications in Mathematical Physics, 2019, 369 : 637 - 673
  • [9] Locally conformal parallel G2 and Spin(7) manifolds
    Ivanov, Stefan
    Parton, Maurizio
    Piccinni, Paolo
    MATHEMATICAL RESEARCH LETTERS, 2006, 13 (2-3) : 167 - 177
  • [10] Killing spinor equations in dimension 7 and geometry of integrable G2-manifolds
    Friedrich, T
    Ivanov, S
    JOURNAL OF GEOMETRY AND PHYSICS, 2003, 48 (01) : 1 - 11