Frolicher-Nijenhuis cohomology on G2- and Spin(7)-manifolds

被引:1
|
作者
Kawai, Kotaro [1 ]
Hong Van Le [2 ]
Schwachhoefer, Lorenz [3 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
[2] CAS, Inst Math, Zitna 25, Prague 11567 1, Czech Republic
[3] TU Dortmund Univ, Fak Math, Vogelpothsweg 87, D-44221 Dortmund, Germany
关键词
Special holonomy; G(2)-manifold; Spin(7)-manifold; Frolicher-Nijenhuis bracket; cohomology invariant; METRICS;
D O I
10.1142/S0129167X18500751
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that a parallel differential form Psi of even degree on a Riemannian manifold allows to define a natural differential both on Omega* (M) and Omega*(M,T M), defined via the Rolicher-Nijenhuis bracket. For instance, on a Kahler manifold, these operators are the complex differential and the Dolbeault differential, respectively. We investigate this construction when taking the differential with respect to the canonical parallel 4-form on a G(2)- and Spin(7)-manifold, respectively. We calculate the cohomology groups of Omega*(M) and give a partial description of the cohomology of Omega*(M,TM).
引用
收藏
页数:36
相关论文
共 50 条