Frolicher-Nijenhuis cohomology on G2- and Spin(7)-manifolds
被引:1
|
作者:
Kawai, Kotaro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Kawai, Kotaro
[1
]
Hong Van Le
论文数: 0引用数: 0
h-index: 0
机构:
CAS, Inst Math, Zitna 25, Prague 11567 1, Czech RepublicUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Hong Van Le
[2
]
Schwachhoefer, Lorenz
论文数: 0引用数: 0
h-index: 0
机构:
TU Dortmund Univ, Fak Math, Vogelpothsweg 87, D-44221 Dortmund, GermanyUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Schwachhoefer, Lorenz
[3
]
机构:
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Special holonomy;
G(2)-manifold;
Spin(7)-manifold;
Frolicher-Nijenhuis bracket;
cohomology invariant;
METRICS;
D O I:
10.1142/S0129167X18500751
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we show that a parallel differential form Psi of even degree on a Riemannian manifold allows to define a natural differential both on Omega* (M) and Omega*(M,T M), defined via the Rolicher-Nijenhuis bracket. For instance, on a Kahler manifold, these operators are the complex differential and the Dolbeault differential, respectively. We investigate this construction when taking the differential with respect to the canonical parallel 4-form on a G(2)- and Spin(7)-manifold, respectively. We calculate the cohomology groups of Omega*(M) and give a partial description of the cohomology of Omega*(M,TM).
机构:
Sobolev Institute of Mathematics, Omsk Branch, Pevtzova 13, Omsk
Omsk State University, Mira 55a, OmskSobolev Institute of Mathematics, Omsk Branch, Pevtzova 13, Omsk
Zubkov A.N.
Shestakov I.P.
论文数: 0引用数: 0
h-index: 0
机构:
Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, São Paulo
Sobolev Institute of Mathematics, NovosibirskSobolev Institute of Mathematics, Omsk Branch, Pevtzova 13, Omsk