Flows of G2-structures on contact Calabi–Yau 7-manifolds

被引:0
|
作者
Jason D. Lotay
Henrique N. Sá Earp
Julieth Saavedra
机构
[1] University of Oxford,
[2] University of Campinas (Unicamp),undefined
来源
关键词
Geometric flows; G2-structures; Contact Calabi–Yau;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Laplacian flow and coflow on contact Calabi–Yau 7-manifolds. We show that the natural initial condition leads to an ancient solution of the Laplacian flow with a finite time Type I singularity which is not a soliton, whereas it produces an immortal (though neither eternal nor self-similar) solution of the Laplacian coflow which has an infinite time singularity of Type IIb, unless the transverse Calabi–Yau geometry is flat. The flows in each case collapse (under normalised volume) to a lower-dimensional limit, which is either R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document}, for the Laplacian flow, or standard C3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^3$$\end{document}, for the Laplacian coflow. We also study the Hitchin flow in this setting, which we show coincides with the Laplacian coflow, up to reparametrisation of time, and defines an (incomplete) Calabi–Yau structure on the spacetime track of the flow.
引用
收藏
页码:367 / 389
页数:22
相关论文
共 50 条
  • [1] Flows of G2-structures on contact Calabi-Yau 7-manifolds
    Lotay, Jason D.
    Earp, Henrique N. Sa
    Saavedra, Julieth
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2022, 62 (02) : 367 - 389
  • [2] Geometric flows of G2-structures on 3-Sasakian 7-manifolds
    Kennon, Aaron
    Lotay, Jason D.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2023, 187
  • [3] Machine learning Sasakian and G2 topology on contact Calabi-Yau 7-manifolds
    Aggarwal, Daattavya
    He, Yang-Hui
    Heyes, Elli
    Hirst, Edward
    Earp, Henrique N. Sa
    Silva, Tomas S. R.
    [J]. PHYSICS LETTERS B, 2024, 850
  • [4] Contact structures on 7-manifolds
    Geiges, H
    Thomas, CB
    [J]. GEOMETRY, TOPOLOGY AND DYNAMICS, 1998, 15 : 53 - 67
  • [5] Calabi–Yau Manifolds with Affine Structures
    V. N. Kokarev
    [J]. Mathematical Notes, 2018, 103 : 669 - 671
  • [6] FLOWS OF G2-STRUCTURES, I
    Karigiannis, Spiro
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2009, 60 (04): : 487 - 522
  • [7] Calabi-Yau Manifolds with Affine Structures
    Kokarev, V. N.
    [J]. MATHEMATICAL NOTES, 2018, 103 (3-4) : 669 - 671
  • [8] Calabi-Yau Manifolds with Torsion and Geometric Flows
    Picard, Sebastien
    [J]. COMPLEX NON-KAHLER GEOMETRY, 2019, 2246 : 57 - 120
  • [9] Homogeneous Contact Manifolds and Resolutions of Calabi–Yau Cones
    Eder M. Correa
    [J]. Communications in Mathematical Physics, 2019, 367 : 1095 - 1151
  • [10] Neutral Calabi-Yau structures on Kodaira manifolds
    Fino, A
    Pedersen, H
    Poon, YS
    Sorensen, MW
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 248 (02) : 255 - 268