Flows of G2-structures on contact Calabi–Yau 7-manifolds

被引:0
|
作者
Jason D. Lotay
Henrique N. Sá Earp
Julieth Saavedra
机构
[1] University of Oxford,
[2] University of Campinas (Unicamp),undefined
来源
关键词
Geometric flows; G2-structures; Contact Calabi–Yau;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Laplacian flow and coflow on contact Calabi–Yau 7-manifolds. We show that the natural initial condition leads to an ancient solution of the Laplacian flow with a finite time Type I singularity which is not a soliton, whereas it produces an immortal (though neither eternal nor self-similar) solution of the Laplacian coflow which has an infinite time singularity of Type IIb, unless the transverse Calabi–Yau geometry is flat. The flows in each case collapse (under normalised volume) to a lower-dimensional limit, which is either R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document}, for the Laplacian flow, or standard C3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^3$$\end{document}, for the Laplacian coflow. We also study the Hitchin flow in this setting, which we show coincides with the Laplacian coflow, up to reparametrisation of time, and defines an (incomplete) Calabi–Yau structure on the spacetime track of the flow.
引用
收藏
页码:367 / 389
页数:22
相关论文
共 50 条
  • [41] Singular 7-manifolds with G2 holonomy and intersecting 6-branes
    Behrndt, K
    [J]. NUCLEAR PHYSICS B, 2002, 635 (1-2) : 158 - 174
  • [42] Seiberg-Witten-like equations on 7-manifolds with G2-structure
    Degirmenci, N
    Özdemir, N
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2005, 12 (04) : 457 - 461
  • [43] On the deformation theory of Calabi-Yau structures in strongly pseudo-convex manifolds
    Alireza Bahraini
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2010, 41 : 409 - 420
  • [44] N=2 Superconformal Algebra and the Entropy of Calabi-Yau Manifolds
    Eguchi, Tohru
    Hikami, Kazuhiro
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2010, 92 (03) : 269 - 297
  • [45] Harmonic Sp(2)-Invariant G2-Structures on the 7-Sphere
    Loubeau, Eric
    Moreno, Andres J.
    Earp, Henrique N. Sa
    Saavedra, Julieth
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (09)
  • [46] AUTOMORPHISM GROUPS OF CALABI-YAU MANIFOLDS OF PICARD NUMBER 2
    Oguiso, Keiji
    [J]. JOURNAL OF ALGEBRAIC GEOMETRY, 2014, 23 (04) : 775 - 795
  • [47] Stable rank-2 bundles on Calabi-Yau manifolds
    Li, WP
    Qin, ZB
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2003, 14 (10) : 1097 - 1120
  • [48] On nearly parallel G2-structures
    Friedrich, T
    Kath, I
    Moroianu, A
    Semmelmann, U
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 1997, 23 (3-4) : 259 - 286
  • [49] On the Geometry of Closed G2-Structures
    Richard Cleyton
    Stefan Ivanov
    [J]. Communications in Mathematical Physics, 2007, 270 : 53 - 67
  • [50] G2-structures on flat solvmanifolds
    Tolcachier, Alejandro
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2022, 92 (02): : 179 - 207