Harmonic Sp(2)-Invariant G2-Structures on the 7-Sphere

被引:0
|
作者
Loubeau, Eric [1 ]
Moreno, Andres J. [2 ]
Earp, Henrique N. Sa [2 ]
Saavedra, Julieth [2 ]
机构
[1] Univ Brest, CNRS, UMR 6205, LMBA, F-29238 Brest, France
[2] Univ Estadual Campinas, IMECC, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
G(2)-structures; Homogeneous space; Energy functional; Harmonic G(2) structures; Geometric flow; Second variation of energy; HOMOGENEOUS SPACES; METRICS;
D O I
10.1007/s12220-022-00953-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the 10-dimensional space of Sp(2)-invariant G(2)-structures on the homogeneous 7-sphere S-7 = Sp(2)/Sp(1) as Omega(3)(+)(S-7)(sp(2)) similar or equal to R+ x Gl(+)(3, R). In those terms, we formulate a general Ansatz for G2-structures, which realises representatives in each of the 7 possible isometric classes of homogeneous G(2)-structures. Moreover, the well-known nearly parallel round and squashed metrics occur naturally as opposite poles in an S 3 -family, the equator of which is a new S-2-family of coclosed G(2)-structures satisfying the harmonicity condition div T = 0. We show general existence of harmonic representatives of G(2)-structures in each isometric class through explicit solutions of the associated flow and describe the qualitative behaviour of the flow. We study the stability of the Dirichlet gradient flow near these critical points, showing explicit examples of degenerate and nondegenerate local maxima and minima, at various regimes of the general Ansatz. Finally, for metrics outside of the Ansatz, we identify families of harmonic G(2)-structures, prove long-time existence of the flow and study the stability properties of some well-chosen examples.
引用
收藏
页数:49
相关论文
共 50 条
  • [1] G2${\mathrm{G}}_2$-instantons on the 7-sphere
    Waldron, Alex
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (04): : 3711 - 3745
  • [2] Classification of compact homogeneous spaces with invariant G2-structures
    Hong Van Le
    Munir, Mobeen
    [J]. ADVANCES IN GEOMETRY, 2012, 12 (02) : 303 - 328
  • [3] Harmonic SU(3)- and G2-Structures via Spinors
    Niedzialomski, Kamil
    [J]. RESULTS IN MATHEMATICS, 2020, 75 (03)
  • [4] DEFORMATIONS OF G2-STRUCTURES WITH TORSION
    Grigorian, Sergey
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2016, 20 (01) : 123 - 155
  • [5] An integral formula for G2-structures
    Niedzialomski, Kamil
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2022, 176
  • [6] On nearly parallel G2-structures
    Friedrich, T
    Kath, I
    Moroianu, A
    Semmelmann, U
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 1997, 23 (3-4) : 259 - 286
  • [7] On the Geometry of Closed G2-Structures
    Richard Cleyton
    Stefan Ivanov
    [J]. Communications in Mathematical Physics, 2007, 270 : 53 - 67
  • [8] G2-structures on flat solvmanifolds
    Tolcachier, Alejandro
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2022, 92 (02): : 179 - 207
  • [9] G2-structures and octonion bundles
    Grigorian, Sergey
    [J]. ADVANCES IN MATHEMATICS, 2017, 308 : 142 - 207
  • [10] G2-STRUCTURES ON EINSTEIN SOLVMANIFOLDS
    Fernandez, Marisa
    Fino, Anna
    Manero, Victor
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2015, 19 (02) : 321 - 341