Integrable hierarchies, Frolicher-Nijenhuis bicomplexes and Lauricella bi-flat F-manifolds

被引:1
|
作者
Lorenzoni, Paolo [1 ,2 ]
Perletti, Sara [1 ,2 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Roberto Cozzi 55, I-20125 Milan, Italy
[2] INFN Sez Milano Bicocca, I-20126 Milan, Italy
基金
欧盟地平线“2020”;
关键词
integrable systems; flat F-manifolds; Euler-Poisson-Darboux system; Lauricella functions; Jordan blocks; DARBOUX-EGOROV SYSTEM; HYDRODYNAMIC-TYPE; PAINLEVE;
D O I
10.1088/1361-6544/ad05dc
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given the Frolicher-Nijenhuis bicomplex (d,dL) associated with a (1,1) -tensor field L with vanishing Nijenhuis torsion, we define a multi-parameter family of bi-flat structures ( backward difference ,e,circle, backward difference *,*,E) . This result is obtained by combining the construction of integrable hierarchies of hydrodynamic type starting from Frolicher-Nijenhuis bicomplexes with the construction of flat F-manifold structures from integrable systems of hydrodynamic type. By construction L is the operator of multiplication by the Euler vector field E and the number of parameters coincides with the number of Jordan blocks appearing in its Jordan normal form. We call these structures Lauricella bi-flat structures since in the n-dimensional semisimple case (n-1) flat coordinates of backward difference are Lauricella functions. The (1,1) -tensor fields defining the corresponding integrable hierarchies have a similar block diagonal structure.
引用
收藏
页码:6925 / 6990
页数:66
相关论文
共 7 条
  • [1] Riemannian F-Manifolds, Bi-Flat F-Manifolds, and Flat Pencils of Metrics
    Arsie, Alessandro
    Buryak, Alexandr
    Lorenzoni, Paolo
    Rossi, Paolo
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (21) : 16730 - 16778
  • [2] Flat F-Manifolds, F-CohFTs, and Integrable Hierarchies
    Arsie, Alessandro
    Buryak, Alexandr
    Lorenzoni, Paolo
    Rossi, Paolo
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 388 (01) : 291 - 328
  • [3] Flat F-Manifolds, F-CohFTs, and Integrable Hierarchies
    Alessandro Arsie
    Alexandr Buryak
    Paolo Lorenzoni
    Paolo Rossi
    [J]. Communications in Mathematical Physics, 2021, 388 : 291 - 328
  • [4] From the Darboux-Egorov system to bi-flat F-manifolds
    Arsiwe, Alessandro
    Lorenzoni, Paolo
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2013, 70 : 98 - 116
  • [5] Complex reflection groups, logarithmic connections and bi-flat F-manifolds
    Arsie, Alessandro
    Lorenzoni, Paolo
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (10) : 1919 - 1961
  • [6] Complex reflection groups, logarithmic connections and bi-flat F-manifolds
    Alessandro Arsie
    Paolo Lorenzoni
    [J]. Letters in Mathematical Physics, 2017, 107 : 1919 - 1961