Flat F-Manifolds, F-CohFTs, and Integrable Hierarchies

被引:0
|
作者
Alessandro Arsie
Alexandr Buryak
Paolo Lorenzoni
Paolo Rossi
机构
[1] The University of Toledo,Department of Mathematics and Statistics
[2] National Research University Higher School of Economics,Faculty of Mathematics
[3] Skolkovo Institute of Science and Technology,Center for Advanced Studies
[4] P.G. Demidov Yaroslavl State University,Dipartimento di Matematica e Applicazioni
[5] Università di Milano-Bicocca,Dipartimento di Matematica “Tullio Levi
[6] INFN sezione di Milano-Bicocca,Civita”
[7] Università degli Studi di Padova,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We define the double ramification hierarchy associated to an F-cohomological field theory and use this construction to prove that the principal hierarchy of any semisimple (homogeneous) flat F-manifold possesses a (homogeneous) integrable dispersive deformation at all orders in the dispersion parameter. The proof is based on the reconstruction of an F-CohFT starting from a semisimple flat F-manifold and additional data in genus 1, obtained in our previous work. Our construction of these dispersive deformations is quite explicit and we compute several examples. In particular, we provide a complete classification of rank 1 hierarchies of DR type at the order 9 approximation in the dispersion parameter and of homogeneous DR hierarchies associated with all 2-dimensional homogeneous flat F-manifolds at genus 1 approximation.
引用
收藏
页码:291 / 328
页数:37
相关论文
共 50 条
  • [1] Flat F-Manifolds, F-CohFTs, and Integrable Hierarchies
    Arsie, Alessandro
    Buryak, Alexandr
    Lorenzoni, Paolo
    Rossi, Paolo
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 388 (01) : 291 - 328
  • [2] Integrable hierarchies, Frolicher-Nijenhuis bicomplexes and Lauricella bi-flat F-manifolds
    Lorenzoni, Paolo
    Perletti, Sara
    [J]. NONLINEARITY, 2023, 36 (12) : 6925 - 6990
  • [3] Riemannian F-Manifolds, Bi-Flat F-Manifolds, and Flat Pencils of Metrics
    Arsie, Alessandro
    Buryak, Alexandr
    Lorenzoni, Paolo
    Rossi, Paolo
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (21) : 16730 - 16778
  • [4] F-MANIFOLDS AND INTEGRABLE SYSTEMS OF HYDRODYNAMIC TYPE
    Lorenzoni, Paolo
    Pedroni, Marco
    Raimondo, Andrea
    [J]. ARCHIVUM MATHEMATICUM, 2011, 47 (03): : 163 - 180
  • [5] Semisimple Flat F-Manifolds in Higher Genus
    Alessandro Arsie
    Alexandr Buryak
    Paolo Lorenzoni
    Paolo Rossi
    [J]. Communications in Mathematical Physics, 2023, 397 : 141 - 197
  • [6] Semisimple Flat F-Manifolds in Higher Genus
    Arsie, Alessandro
    Buryak, Alexandr
    Lorenzoni, Paolo
    Rossi, Paolo
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 397 (01) : 141 - 197
  • [7] F-manifolds with flat structure and Dubrovin's duality
    Manin, YI
    [J]. ADVANCES IN MATHEMATICS, 2005, 198 (01) : 5 - 26
  • [8] DEFICIENCY IN F-MANIFOLDS
    CUTLER, WH
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 34 (01) : 260 - &
  • [9] Reciprocal F-manifolds
    Arsie, Alessandro
    Lorenzoni, Paolo
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2013, 70 : 185 - 204
  • [10] ON CONNECTIONS IN F-MANIFOLDS
    MOZGAWA, W
    ROMPALA, W
    [J]. REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1984, 29 (03): : 249 - 254