Effect of gasified biomass fuel on load characteristics of an intermediate-temperature solid oxide fuel cell and gas turbine hybrid system

被引:33
|
作者
Lv, Xiaojing [1 ]
Gu, Chenghong [2 ]
Liu, Xing [1 ]
Weng, Yiwu [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, Minist Educ, Key Lab Power Machinery & Engn, Shanghai 200240, Peoples R China
[2] Univ Bath, Dept Elect & Elect Engn, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
Intermediate temperature solid oxide fuel cell; Gas turbine; Hybrid system; Gasified biomass gas; Load characteristic; Adjusting mode; PERFORMANCE ANALYSIS; THERMODYNAMIC ANALYSIS; EXERGY ANALYSIS; SOFC; OPTIMIZATION; GASIFICATION; POWER; INTEGRATION; DESIGN; ANODE;
D O I
10.1016/j.ijhydene.2016.04.104
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work uses the mathematical model of an intermediate-temperature solid oxide fuel cell and gas turbine (IT-SOFC/GT) hybrid system to study the effects of gasified biomass fuels on system load characteristics. The system performance is investigated by using four types of fuels in each adjusting mode. The relation between the fuel type and load adjusting mode is obtained for users and designers to select the appropriate fuel for reasonable operation modes. Results show that the hybrid system of 182.4 kW has a high electric efficiency of 60.78% by using wood chip gas (WCG). If cotton wood gas (CWG) and corn stalk gas (CSG) are used, both boundary values of steam to carbon ratio (S/C-bv) and system power are higher, but system efficiencies decrease to 57.36% and 57.87% respectively. In the designed three load adjusting modes, the system can reach maximum efficiency over 59% with four types of biomass gases. If high efficiency and a wide range of load adjustment are required, users can select Case B to use fuels like WCG and GSG. When higher efficiency and low load is expected, Case A is more desirable. With fuels like CWG and CSG, the system has good safety performance in Case C. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:9563 / 9576
页数:14
相关论文
共 50 条
  • [31] Electrospun composite nanofibers for intermediate-temperature solid oxide fuel cell electrodes
    Ahn, Minwoo
    Han, Seungwoo
    Lee, Jongseo
    Lee, Wonyoung
    CERAMICS INTERNATIONAL, 2020, 46 (05) : 6006 - 6011
  • [32] Materials for Intermediate-Temperature Solid-Oxide Fuel Cells
    Kilner, John A.
    Burriel, Monica
    ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 44, 2014, 44 : 365 - 393
  • [33] Coke formation and performance of an intermediate-temperature solid oxide fuel cell operating on dimethyl ether fuel
    Su, Chao
    Ran, Ran
    Wang, Wei
    Shao, Zongping
    JOURNAL OF POWER SOURCES, 2011, 196 (04) : 1967 - 1974
  • [34] Electrolyte materials for intermediate-temperature solid oxide fuel cells
    Huangang Shi
    Chao Su
    Ran Ran
    Jiafeng Cao
    Zongping Shao
    ProgressinNaturalScience:MaterialsInternational, 2020, 30 (06) : 764 - 774
  • [35] Effect of fuel cell operating parameters on the performance of a multi-MW solid oxide fuel cell/gas turbine hybrid system
    Karvountzi, Georgia C.
    Ferrall, Joe
    Powers, James D.
    PROCEEDINGS OF THE ASME TURBO EXPO, VOL 3, 2007, : 271 - 280
  • [36] Fuel-Adaptability Analysis of Intermediate-Temperature-SOFC/Gas Turbine Hybrid System With Biomass Gas
    Ding, Xiaoyi
    Lv, Xiaojing
    Weng, Yiwu
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2021, 143 (02):
  • [37] Control design for a bottoming solid oxide fuel cell gas turbine hybrid system
    Mueller, Fabian
    Jabbari, Faryar
    Brouwer, Jacob
    Roberts, Rory
    Junker, Tobias
    Ghezel-Ayagh, Hossein
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY, PTS A AND B, 2006, : 629 - 640
  • [38] Economic plantwide control of a hybrid solid oxide fuel cell - gas turbine system
    Dehghan, Ali Reza
    Fanaei, Mohammad Ali
    Panahi, Mehdi
    APPLIED ENERGY, 2022, 328
  • [39] Control design for a bottoming solid oxide fuel cell gas turbine hybrid system
    Mueller, Fabian
    Jabbari, Faryar
    Brouwer, Jacob
    Roberts, Rory
    Junker, Tobias
    Ghezel-Ayagh, Hossein
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2007, 4 (03): : 221 - 230
  • [40] Dynamic modeling of a hybrid system of the solid oxide fuel cell and recuperative gas turbine
    Zhang, Xiongwen
    Li, Jun
    Li, Guojun
    Feng, Zhenping
    JOURNAL OF POWER SOURCES, 2006, 163 (01) : 523 - 531