Effect of gasified biomass fuel on load characteristics of an intermediate-temperature solid oxide fuel cell and gas turbine hybrid system

被引:33
|
作者
Lv, Xiaojing [1 ]
Gu, Chenghong [2 ]
Liu, Xing [1 ]
Weng, Yiwu [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, Minist Educ, Key Lab Power Machinery & Engn, Shanghai 200240, Peoples R China
[2] Univ Bath, Dept Elect & Elect Engn, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
Intermediate temperature solid oxide fuel cell; Gas turbine; Hybrid system; Gasified biomass gas; Load characteristic; Adjusting mode; PERFORMANCE ANALYSIS; THERMODYNAMIC ANALYSIS; EXERGY ANALYSIS; SOFC; OPTIMIZATION; GASIFICATION; POWER; INTEGRATION; DESIGN; ANODE;
D O I
10.1016/j.ijhydene.2016.04.104
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work uses the mathematical model of an intermediate-temperature solid oxide fuel cell and gas turbine (IT-SOFC/GT) hybrid system to study the effects of gasified biomass fuels on system load characteristics. The system performance is investigated by using four types of fuels in each adjusting mode. The relation between the fuel type and load adjusting mode is obtained for users and designers to select the appropriate fuel for reasonable operation modes. Results show that the hybrid system of 182.4 kW has a high electric efficiency of 60.78% by using wood chip gas (WCG). If cotton wood gas (CWG) and corn stalk gas (CSG) are used, both boundary values of steam to carbon ratio (S/C-bv) and system power are higher, but system efficiencies decrease to 57.36% and 57.87% respectively. In the designed three load adjusting modes, the system can reach maximum efficiency over 59% with four types of biomass gases. If high efficiency and a wide range of load adjustment are required, users can select Case B to use fuels like WCG and GSG. When higher efficiency and low load is expected, Case A is more desirable. With fuels like CWG and CSG, the system has good safety performance in Case C. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:9563 / 9576
页数:14
相关论文
共 50 条
  • [11] Process integration and optimization of a solid oxide fuel cell - Gas turbine hybrid cycle fueled with hydrothermally gasified waste biomass
    Facchinetti, Emanuele
    Gassner, Martin
    D'Amelio, Matilde
    Marechal, Francois
    Favrat, Daniel
    ENERGY, 2012, 41 (01) : 408 - 419
  • [12] Power and temperature control of fluctuating biomass gas fueled solid oxide fuel cell and micro gas turbine hybrid system
    Kaneko, T.
    Brouwer, J.
    Samuelsen, G. S.
    JOURNAL OF POWER SOURCES, 2006, 160 (01) : 316 - 325
  • [13] OPTIMIZATION OF A SOLID OXIDE FUEL CELL AND GAS TURBINE HYBRID SYSTEM
    Kanarit, Setthawut
    Karunkeyoon, Wirinya
    Ai-Alili, Ali
    Eveloy, Valerie
    Rodgers, Peter
    PROCEEDINGS OF THE ASME 13TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2015, 2016,
  • [14] Performance Analysis of an Intermediate-Temperature-SOFC/Gas Turbine Hybrid System Using Gasified Biomass Fuel in Different Operating Modes
    Lv, Xiaojing
    Ding, Xiaoyi
    Weng, Yiwu
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2019, 141 (01):
  • [15] Exergy Analysis of an Intermediate Temperature Solid Oxide Fuel Cell-Gas Turbine Hybrid System Fed with Ethanol
    Stamatis, Anastassios
    Vinni, Christina
    Bakalis, Diamantis
    Tzorbatzoglou, Fotini
    Tsiakaras, Panagiotis
    ENERGIES, 2012, 5 (11) : 4268 - 4287
  • [16] An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode
    Zhi, Mingjia
    Lee, Shiwoo
    Miller, Nicholas
    Menzler, Norbert H.
    Wu, Nianqiang
    ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (05) : 7066 - 7071
  • [17] Exergetic Studies of Intermediate-Temperature, Solid Oxide Fuel Cell Electrolytes
    Williams, M.
    Yamaji, K.
    Horita, T.
    Sakai, N.
    Yokokawa, H.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (04) : B546 - B551
  • [18] PbO effect on the oxygen reduction reaction in intermediate-temperature solid oxide fuel cell
    Nadeem, Mubashar
    Li, Yihang
    Bouwmeester, Henny J. M.
    Xia, Changrong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (46) : 25299 - 25306
  • [19] Characteristics of solid oxide fuel cells in gasified gases from biomass
    Yamaguchi, S.
    Muroyama, H.
    Matsui, T.
    Eguchi, K.
    JOURNAL OF POWER SOURCES, 2021, 488
  • [20] DEVELOPMENT AND OPTIMIZATION OF A SOLID OXIDE FUEL CELL GAS TURBINE HYBRID SYSTEM
    Sprengel, Michael
    Echter, Nick
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 5, 2024,