Effect of fuel cell operating parameters on the performance of a multi-MW solid oxide fuel cell/gas turbine hybrid system

被引:0
|
作者
Karvountzi, Georgia C. [1 ]
Ferrall, Joe [1 ]
Powers, James D. [1 ]
机构
[1] GE Global Res, Torrance, CA USA
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The principal planar solid oxide fuel cell operating parameters are pressure, stack temperature and temperature gradient, cell voltage, fuel utilization, leakage rate and percentage of internal reforming. This paper shows the effects of these parameters on overall fuel cell/gas turbine hybrid system performance. The baseline conceptual system used to investigate these parameters is a 500MW hybrid system. The system performance was simulated using ASPEN Plus and GateCycle (TM) commercial software platforms and a GE developed FORTRAN code to simulate the fuel cell performance. Parameter choices for the baseline case are: 15atm pressure, 725C average cell temperature, 150C stack temperature rise, 0.75V average cell voltage, 80% fuel utilization, 1% leakagTe rate and 70% internal reforming. At these conditions, the system efficiency is predicted at approximately 65.8%. The addition of a steam turbine bottoming cycle, increases the hybrid system efficiency by 4% to 70%. Increasing the average cell voltage to 0.8V or the percentage of internal reforming to 90% also increases the hybrid system efficiency to nearly 70%. The optimum pressure for maximum efficiency is 8 atm for the hybrid system; the optimum pressure for the hybrid with a steam turbine bottoming cycle is 9 atm. While increasing the SOFC temperature rise, cell voltage, and percentage of internal reforming improve system efficiency, they may adversely affect stack cost and reliability; these competing effects must be traded when designing a practical system.
引用
收藏
页码:271 / 280
页数:10
相关论文
共 50 条
  • [1] Effect of operating parameters on a hybrid system of intermediate-temperature solid oxide fuel cell and gas turbine
    Lv, Xiaojing
    Lu, Chaohao
    Wang, Yuzhang
    Weng, Yiwu
    ENERGY, 2015, 91 : 10 - 19
  • [2] Coupling effect of operating parameters on performance of a biogas-fueled solid oxide fuel cell/gas turbine hybrid system
    Ding, Xiaoyi
    Lv, Xiaojing
    Weng, Yiwu
    APPLIED ENERGY, 2019, 254
  • [3] Part load strategies of a multi-MW molten carbonate fuel cell gas turbine hybrid system
    Karvountzi, Georgia C.
    Duby, Paul F.
    PROCEEDINGS OF THE ASME TURBO EXPO, VOL 3, 2007, : 39 - 45
  • [4] Effects of operating and design parameters on the performance of a solid oxide fuel cell-gas turbine system
    Suther, T.
    Fung, A. S.
    Koksal, M.
    Zabihian, F.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (07) : 616 - 632
  • [5] Influence of Gas Turbine Performance and Fuel Cell Power Share on the Performance of Solid Oxide Fuel Cell/Gas Turbine Hybrid Systems
    Ahn, Ji-Ho
    Kang, Soo Young
    Kim, Tong Seop
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2012, 36 (04) : 439 - 447
  • [6] OPTIMIZATION OF A SOLID OXIDE FUEL CELL AND GAS TURBINE HYBRID SYSTEM
    Kanarit, Setthawut
    Karunkeyoon, Wirinya
    Ai-Alili, Ali
    Eveloy, Valerie
    Rodgers, Peter
    PROCEEDINGS OF THE ASME 13TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2015, 2016,
  • [7] FUEL UTILIZATION EFFECTS ON SYSTEM EFFICIENCY AND SOLID OXIDE FUEL CELL PERFORMANCE IN GAS TURBINE HYBRID SYSTEMS
    Harun, Nor Farida
    Shadle, Lawrence
    Oryshchyn, Danylo
    Tucker, David
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2017, VOL 3, 2017,
  • [8] Performance Study of Hybrid Solid Oxide Fuel Cell-Gas Turbine Power System
    Zhao, Hongbin
    Liu, Xu
    ACHIEVEMENTS IN ENGINEERING MATERIALS, ENERGY, MANAGEMENT AND CONTROL BASED ON INFORMATION TECHNOLOGY, PTS 1 AND 2, 2011, 171-172 : 319 - 322
  • [9] DEVELOPMENT AND OPTIMIZATION OF A SOLID OXIDE FUEL CELL GAS TURBINE HYBRID SYSTEM
    Sprengel, Michael
    Echter, Nick
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 5, 2024,
  • [10] Control strategy for a solid oxide fuel cell and gas turbine hybrid system
    Stiller, Christoph
    Thorud, Bjorn
    Bolland, Olav
    Kandepu, Rambabu
    Imsland, Lars
    JOURNAL OF POWER SOURCES, 2006, 158 (01) : 303 - 315