A family of diffusion processes on Sierpinski carpets

被引:5
|
作者
Osada, H [1 ]
机构
[1] Nagoya Univ, Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
D O I
10.1007/PL00008761
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We construct a family of diffusions P-alpha = {P-x } on the d-dimensional Sierpinski carpet (F) over cap. The parameter alpha ranges over d(H) < <alpha> < <infinity>, where d(H) = log(3(d) - 1)/log3 is the Hausdorff dimension of the d-dimensional Sierpinski carpet (F) over cap. These diffusions P-alpha are reversible with invariant measures mu = mu (\ alpha \). Here, mu are Radon measures whose topological supports are equal to (F) over cap and satisfy self-similarity in the sense that mu (3A) = 3(alpha).mu (A) for all A is an element of B((F) over cap). In addition, the diffusion is self-similar and invariant under local weak translations (cell translations) of the Sierpinski carpet. The transition density p = p(t, x, y) is locally uniformly positive and satisfies a global Gaussian upper bound. In spite of these well-behaved properties. the diffusions are different from Barlow-Bass Brownian motions on the Sierpinski carpet.
引用
收藏
页码:275 / 310
页数:36
相关论文
共 50 条
  • [1] A family of diffusion processes on Sierpinski carpets
    Hirofumi Osada
    Probability Theory and Related Fields, 2001, 119 : 275 - 310
  • [2] DIFFUSION-LIMITED AGGREGATION ON A FAMILY OF SIERPINSKI CARPETS
    KIM, IM
    KIM, MH
    YOON, DH
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1993, 26 (05) : 562 - 564
  • [3] Transition density estimates for diffusion processes on homogeneous random Sierpinski carpets
    Hambly, BM
    Kumagai, T
    Kusuoka, S
    Zhou, XY
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2000, 52 (02) : 373 - 408
  • [4] Uniformization of Sierpinski Carpets by Square Carpets
    Ntalampekos, Dimitrios
    POTENTIAL THEORY ON SIERPINSKI CARPETS: WITH APPLICATIONS TO UNIFORMIZATION, 2020, 2268 : 91 - 177
  • [5] Weak homogenization of anisotropic diffusion on pre-Sierpinski carpets
    Barlow, MT
    Hattori, K
    Hattori, T
    Watanabe, H
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 188 (01) : 1 - 27
  • [6] LOWER AND UPPER-BOUNDS FOR THE ANOMALOUS DIFFUSION EXPONENT ON SIERPINSKI CARPETS
    KIM, MH
    YOON, DH
    KIM, IM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (21): : 5655 - 5660
  • [7] Quantum transport in Sierpinski carpets
    van Veen, Edo
    Yuan, Shengjun
    Katsnelson, Mikhail I.
    Polini, Marco
    Tomadin, Andrea
    PHYSICAL REVIEW B, 2016, 93 (11)
  • [8] Harmonic Functions on Sierpinski Carpets
    Ntalampekos, Dimitrios
    POTENTIAL THEORY ON SIERPINSKI CARPETS: WITH APPLICATIONS TO UNIFORMIZATION, 2020, 2268 : 9 - 89
  • [9] The pore structure of Sierpinski carpets
    Franz, A
    Schulzky, C
    Tarafdar, S
    Hoffmann, KH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (42): : 8751 - 8765
  • [10] On Sierpinski carpets and doubling measures
    Peng, Fengji
    Wen, Shengyou
    NONLINEARITY, 2014, 27 (06) : 1287 - 1298