A family of diffusion processes on Sierpinski carpets

被引:0
|
作者
Hirofumi Osada
机构
[1] Graduate School of Mathematics,
[2] Nagoya University,undefined
[3] Chikusa-ku,undefined
[4] Nagoya,undefined
[5] 464-8602,undefined
[6] Japan. e-mail: osada@math.nagoya-u.ac.jp,undefined
来源
关键词
Mathematics Subject Classification (2000): 60J60, 60J45;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a family of diffusions Pα = {Px} on the d-dimensional Sierpinski carpet F^. The parameter α ranges over dH < α < ∞, where dH = log(3d− 1)/log 3 is the Hausdorff dimension of the d-dimensional Sierpinski carpet F^. These diffusions Pα are reversible with invariant measures μ = μ[α]. Here, μ are Radon measures whose topological supports are equal to F^ and satisfy self-similarity in the sense that μ(3A) = 3α·μ(A) for all A∈ℬ(F^). In addition, the diffusion is self-similar and invariant under local weak translations (cell translations) of the Sierpinski carpet. The transition density p = p(t, x, y) is locally uniformly positive and satisfies a global Gaussian upper bound. In spite of these well-behaved properties, the diffusions are different from Barlow-Bass' Brownian motions on the Sierpinski carpet.
引用
收藏
页码:275 / 310
页数:35
相关论文
共 50 条
  • [2] DIFFUSION-LIMITED AGGREGATION ON A FAMILY OF SIERPINSKI CARPETS
    KIM, IM
    KIM, MH
    YOON, DH
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1993, 26 (05) : 562 - 564
  • [3] Transition density estimates for diffusion processes on homogeneous random Sierpinski carpets
    Hambly, BM
    Kumagai, T
    Kusuoka, S
    Zhou, XY
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2000, 52 (02) : 373 - 408
  • [4] Uniformization of Sierpinski Carpets by Square Carpets
    Ntalampekos, Dimitrios
    [J]. POTENTIAL THEORY ON SIERPINSKI CARPETS: WITH APPLICATIONS TO UNIFORMIZATION, 2020, 2268 : 91 - 177
  • [5] Weak homogenization of anisotropic diffusion on pre-Sierpinski carpets
    Barlow, MT
    Hattori, K
    Hattori, T
    Watanabe, H
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 188 (01) : 1 - 27
  • [6] LOWER AND UPPER-BOUNDS FOR THE ANOMALOUS DIFFUSION EXPONENT ON SIERPINSKI CARPETS
    KIM, MH
    YOON, DH
    KIM, IM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (21): : 5655 - 5660
  • [7] Quantum transport in Sierpinski carpets
    van Veen, Edo
    Yuan, Shengjun
    Katsnelson, Mikhail I.
    Polini, Marco
    Tomadin, Andrea
    [J]. PHYSICAL REVIEW B, 2016, 93 (11)
  • [8] Harmonic Functions on Sierpinski Carpets
    Ntalampekos, Dimitrios
    [J]. POTENTIAL THEORY ON SIERPINSKI CARPETS: WITH APPLICATIONS TO UNIFORMIZATION, 2020, 2268 : 9 - 89
  • [9] The pore structure of Sierpinski carpets
    Franz, A
    Schulzky, C
    Tarafdar, S
    Hoffmann, KH
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (42): : 8751 - 8765
  • [10] On Sierpinski carpets and doubling measures
    Peng, Fengji
    Wen, Shengyou
    [J]. NONLINEARITY, 2014, 27 (06) : 1287 - 1298