The pore structure of Sierpinski carpets

被引:12
|
作者
Franz, A [1 ]
Schulzky, C
Tarafdar, S
Hoffmann, KH
机构
[1] Tech Univ Chemnitz, Inst Phys, D-09107 Chemnitz, Germany
[2] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B9, Canada
[3] Jadavpur Univ, Condensed Matter Phys Res Ctr, Kolkata 700032, W Bengal, India
来源
关键词
D O I
10.1088/0305-4470/34/42/303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a new method is developed to investigate the pore structure of finitely and even infinitely ramified Sierpinski carpets. The holes in every iteration stage of the carpet are described by a hole-counting polynomial. This polynomial can be computed iteratively for all carpet stages and contains information about the distribution of holes with different areas and perimeters, from which dimensions governing the scaling of these quantities can be determined. Whereas the hole area is known to be two dimensional, the dimension of the hole perimeter may be related to the random walk dimension.
引用
下载
收藏
页码:8751 / 8765
页数:15
相关论文
共 50 条
  • [1] Uniformization of Sierpinski Carpets by Square Carpets
    Ntalampekos, Dimitrios
    POTENTIAL THEORY ON SIERPINSKI CARPETS: WITH APPLICATIONS TO UNIFORMIZATION, 2020, 2268 : 91 - 177
  • [2] Quantum transport in Sierpinski carpets
    van Veen, Edo
    Yuan, Shengjun
    Katsnelson, Mikhail I.
    Polini, Marco
    Tomadin, Andrea
    PHYSICAL REVIEW B, 2016, 93 (11)
  • [3] Harmonic Functions on Sierpinski Carpets
    Ntalampekos, Dimitrios
    POTENTIAL THEORY ON SIERPINSKI CARPETS: WITH APPLICATIONS TO UNIFORMIZATION, 2020, 2268 : 9 - 89
  • [4] On Sierpinski carpets and doubling measures
    Peng, Fengji
    Wen, Shengyou
    NONLINEARITY, 2014, 27 (06) : 1287 - 1298
  • [5] A class of Sierpinski carpets with overlaps
    Zou, Yuru
    Yao, Yuanyuan
    Li, Wenxia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (02) : 1422 - 1432
  • [6] MULTIFRACTAL ANALYSIS OF SIERPINSKI CARPETS
    KIM, JH
    YOON, DH
    KIM, I
    KIM, MH
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1993, 26 : S402 - S405
  • [7] Connected generalised Sierpinski carpets
    Cristea, Ligia Loreta
    Steinsky, Bertran
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (07) : 1157 - 1162
  • [8] Non-Removability of Sierpinski Carpets
    Ntalampekos, Dimitrios
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2021, 70 (03) : 847 - 854
  • [9] THE HAUSDORFF DIMENSION OF GENERAL SIERPINSKI CARPETS
    MCMULLEN, C
    NAGOYA MATHEMATICAL JOURNAL, 1984, 96 (DEC) : 1 - 9
  • [10] The Hausdorff measure of a class of Sierpinski carpets
    Xiong, YH
    Zhou, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 305 (01) : 121 - 129