The pore structure of Sierpinski carpets

被引:12
|
作者
Franz, A [1 ]
Schulzky, C
Tarafdar, S
Hoffmann, KH
机构
[1] Tech Univ Chemnitz, Inst Phys, D-09107 Chemnitz, Germany
[2] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B9, Canada
[3] Jadavpur Univ, Condensed Matter Phys Res Ctr, Kolkata 700032, W Bengal, India
来源
关键词
D O I
10.1088/0305-4470/34/42/303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a new method is developed to investigate the pore structure of finitely and even infinitely ramified Sierpinski carpets. The holes in every iteration stage of the carpet are described by a hole-counting polynomial. This polynomial can be computed iteratively for all carpet stages and contains information about the distribution of holes with different areas and perimeters, from which dimensions governing the scaling of these quantities can be determined. Whereas the hole area is known to be two dimensional, the dimension of the hole perimeter may be related to the random walk dimension.
引用
收藏
页码:8751 / 8765
页数:15
相关论文
共 50 条
  • [21] CLASSIFICATION AND UNIVERSAL PROPERTIES OF SIERPINSKI CARPETS
    LIN, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (03): : L163 - L170
  • [22] Percolation on pre-Sierpinski carpets
    Kumagai, T
    NEW TRENDS IN STOCHASTIC ANALYSIS, 1997, : 288 - 304
  • [23] A SUGGESTED LACUNARITY EXPRESSION FOR SIERPINSKI CARPETS
    LIN, B
    YANG, ZR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (02): : L49 - L52
  • [24] Universal conductance fluctuations in Sierpinski carpets
    Yu-Lei Han
    Zhen-Hua Qiao
    Frontiers of Physics, 2019, 14
  • [25] Universal conductance fluctuations in Sierpinski carpets
    Han, Yu-Lei
    Qiao, Zhen-Hua
    FRONTIERS OF PHYSICS, 2019, 14 (06)
  • [26] Scaling for random walks on Sierpinski carpets
    Reis, FDA
    PHYSICS LETTERS A, 1996, 214 (5-6) : 239 - 242
  • [27] Random walks on graphical Sierpinski carpets
    Barlow, MT
    Bass, RF
    RANDOM WALKS AND DISCRETE POTENTIAL THEORY, 1999, 39 : 26 - 55
  • [28] The Hausdorff measure of some Sierpinski carpets
    Min, W
    CHAOS SOLITONS & FRACTALS, 2005, 24 (03) : 717 - 731
  • [29] Hausdorff measures of a class of Sierpinski carpets
    2000, J Zhongshan Univ, Guangzhou, China (39):
  • [30] QUASISYMMETRIC EMBEDDINGS OF SLIT SIERPINSKI CARPETS
    Hakobyan, Hrant
    Li, Wen-Bo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 8877 - 8918