A family of diffusion processes on Sierpinski carpets

被引:5
|
作者
Osada, H [1 ]
机构
[1] Nagoya Univ, Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
D O I
10.1007/PL00008761
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We construct a family of diffusions P-alpha = {P-x } on the d-dimensional Sierpinski carpet (F) over cap. The parameter alpha ranges over d(H) < <alpha> < <infinity>, where d(H) = log(3(d) - 1)/log3 is the Hausdorff dimension of the d-dimensional Sierpinski carpet (F) over cap. These diffusions P-alpha are reversible with invariant measures mu = mu (\ alpha \). Here, mu are Radon measures whose topological supports are equal to (F) over cap and satisfy self-similarity in the sense that mu (3A) = 3(alpha).mu (A) for all A is an element of B((F) over cap). In addition, the diffusion is self-similar and invariant under local weak translations (cell translations) of the Sierpinski carpet. The transition density p = p(t, x, y) is locally uniformly positive and satisfies a global Gaussian upper bound. In spite of these well-behaved properties. the diffusions are different from Barlow-Bass Brownian motions on the Sierpinski carpet.
引用
收藏
页码:275 / 310
页数:36
相关论文
共 50 条
  • [21] HAUSDORFF MEASURES OF A CLASS OF SIERPINSKI CARPETS
    Chen Dan (Yunnan University
    AnalysisinTheoryandApplications, 2004, (02) : 167 - 174
  • [22] THE HAUSDORFF MEASURE OF GENERALIZED SIERPINSKI CARPETS
    Zhu Yucan(Department of Mathematics Fuzhou University Fuzhou 350002 RPC)andLou Jun(Department of Scientific Calculation & Compute ApplicationZhong Shan UniversityGuangzhou 510275PRC)
    ApproximationTheoryandItsApplications, 2000, (02) : 13 - 18
  • [23] RESISTANCE AND SPECTRAL DIMENSION OF SIERPINSKI CARPETS
    BARLOW, MT
    BASS, RF
    SHERWOOD, JD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (06): : L253 - L258
  • [24] Scaling for random walks on Sierpinski carpets
    Departamento de Física, Universidade Federal Fluminense, Av. Litoranea s/n, Gragoata, CEP 24210-340 Niterói, RJ, Brazil
    Phys Lett Sect A Gen At Solid State Phys, 5-6 (239-242):
  • [25] A NOTE ON HAUSDORFF MEASURES OF SIERPINSKI CARPETS
    Ma Dongkui(South China University of Technology
    Approximation Theory and Its Applications, 2001, (03) : 85 - 89
  • [26] CLASSIFICATION AND UNIVERSAL PROPERTIES OF SIERPINSKI CARPETS
    LIN, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (03): : L163 - L170
  • [27] A SUGGESTED LACUNARITY EXPRESSION FOR SIERPINSKI CARPETS
    LIN, B
    YANG, ZR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (02): : L49 - L52
  • [28] Universal conductance fluctuations in Sierpinski carpets
    Yu-Lei Han
    Zhen-Hua Qiao
    Frontiers of Physics, 2019, 14
  • [29] Universal conductance fluctuations in Sierpinski carpets
    Han, Yu-Lei
    Qiao, Zhen-Hua
    FRONTIERS OF PHYSICS, 2019, 14 (06)
  • [30] Percolation on pre-Sierpinski carpets
    Kumagai, T
    NEW TRENDS IN STOCHASTIC ANALYSIS, 1997, : 288 - 304