Izergin-Korepin approach to symmetric functions

被引:0
|
作者
Motegi, Kohei [1 ]
Sakai, Kazumitsu [2 ]
机构
[1] Tokyo Univ Marine Sci & Technol, Fac Marine Technol, Koto Ku, Etchujima 2-1-6, Tokyo 1358533, Japan
[2] Tokyo Univ Sci, Dept Phys, Shinjuku Ku, Kagurazaka 1-3, Tokyo 1628601, Japan
关键词
REFINED CAUCHY/LITTLEWOOD IDENTITIES; SYMPLECTIC SHIFTED TABLEAUX; 6-VERTEX MODEL; PLANE PARTITIONS; SCALAR PRODUCTS; TRANSFER-MATRIX; VERTEX MODELS; IRF MODELS; DEFORMATIONS; FORMULA;
D O I
10.1088/1742-6596/1194/1/012077
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently, the Izergin-Korepin technique, which was originally a method to the analyze the domain wall boundary partition functions initiated by Korepin and Izergin, was extended to the wavefunctions of integrable six-vertex models. We illustrate for the case of the rational integrable models.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Exact solution of the Izergin-Korepin model with general non-diagonal boundary terms
    Hao, Kun
    Cao, Junpeng
    Li, Guang-Liang
    Yang, Wen-Li
    Shi, Kangjie
    Wang, Yupeng
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (06):
  • [22] Critical behaviour of the dilute O(n), Izergin-Korepin and dilute A(L) face models: Bulk properties
    Zhou, YK
    Batchelor, MT
    NUCLEAR PHYSICS B, 1997, 485 (03) : 646 - 664
  • [23] CRITICAL PROPERTIES OF THE IZERGIN-KOREPIN AND SOLVABLE O(N) MODELS AND THEIR RELATED QUANTUM SPIN CHAINS
    WARNAAR, SO
    BATCHELOR, MT
    NIENHUIS, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (11): : 3077 - 3095
  • [24] The domain wall partition function for the Izergin-Korepin nineteen-vertex model at a root of unity
    Garbali, A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
  • [25] Non compact conformal field theory and the a2(2) (Izergin-Korepin) model in regime III
    Vernier, Eric
    Jacobsen, Jesper Lykke
    Saleur, Hubert
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (28)
  • [26] Izergin-Korepin analysis on the wavefunctions of the Uq (sl2) six-vertex model with reflecting end
    Motegi, Kohei
    ANNALES DE L INSTITUT HENRI POINCARE D, 2020, 7 (02): : 165 - 202
  • [27] THE SUBLEADING MAGNETIC DEFORMATION OF THE TRICRITICAL ISING-MODEL IN 2 DIMENSIONS AS RSOS RESTRICTION OF THE IZERGIN-KOREPIN MODEL
    COLOMO, F
    KOUBEK, A
    MUSSARDO, G
    PHYSICS LETTERS B, 1992, 274 (3-4) : 367 - 373
  • [28] Polynomial Structure in Determinants for Izergin–Korepin Partition Function
    A. G. Pronko
    V. O. Tarasov
    Journal of Mathematical Sciences, 2024, 284 (5) : 726 - 734
  • [29] Trivializing generalizations of some izergin-korepin-type determinants
    Amdeberhan, Tewodros
    Zeilberger, Doron
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2007, 9 (01): : 203 - 206
  • [30] An Izergin-Korepin-type identity for the 8VSOS model, with applications to alternating sign matrices
    Rosengren, Hjalmar
    ADVANCES IN APPLIED MATHEMATICS, 2009, 43 (02) : 137 - 155