Izergin-Korepin approach to symmetric functions

被引:0
|
作者
Motegi, Kohei [1 ]
Sakai, Kazumitsu [2 ]
机构
[1] Tokyo Univ Marine Sci & Technol, Fac Marine Technol, Koto Ku, Etchujima 2-1-6, Tokyo 1358533, Japan
[2] Tokyo Univ Sci, Dept Phys, Shinjuku Ku, Kagurazaka 1-3, Tokyo 1628601, Japan
关键词
REFINED CAUCHY/LITTLEWOOD IDENTITIES; SYMPLECTIC SHIFTED TABLEAUX; 6-VERTEX MODEL; PLANE PARTITIONS; SCALAR PRODUCTS; TRANSFER-MATRIX; VERTEX MODELS; IRF MODELS; DEFORMATIONS; FORMULA;
D O I
10.1088/1742-6596/1194/1/012077
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently, the Izergin-Korepin technique, which was originally a method to the analyze the domain wall boundary partition functions initiated by Korepin and Izergin, was extended to the wavefunctions of integrable six-vertex models. We illustrate for the case of the rational integrable models.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] SYMMETRIC FUNCTIONS
    RUEHR, OG
    BIRD, MT
    BRUCKMAN, PS
    CARLITZ, L
    EVANS, R
    FOREGGER, T
    LAGARIAS, J
    LOSSERS, OP
    MATTICS, LE
    MURTY, R
    MURTY, K
    RASMUSSEN, CH
    RICHTER, B
    STENGER, A
    AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (07): : 764 - 764
  • [42] SYMMETRIC CONE MONOTONE FUNCTIONS AND SYMMETRIC CONE CONVEX FUNCTIONS
    Chang, Yu-Lin
    Chen, Jein-Shan
    Pan, Shaohua
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (03) : 499 - 512
  • [43] A generalization of quasi-symmetric functions and noncommutative symmetric functions
    Duchamp, G
    Hivert, F
    Thibon, JY
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (12): : 1113 - 1116
  • [44] Symmetric group characters as symmetric functions
    Orellana, Rosa
    Zabrocki, Mike
    ADVANCES IN MATHEMATICS, 2021, 390
  • [45] Representations of the symmetric group generated by projected spin functions: A graphical approach
    Rettrup, S
    Pauncz, R
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1996, 60 (01) : 91 - 98
  • [46] A Combinatorial Approach to the Groebner Bases for Ideals Generated by Elementary Symmetric Functions
    Bu, A. J.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (03):
  • [47] Decomposition of symmetric and partially symmetric boolean functions in a basis of monotone functions
    L. B. Avgul’
    A. S. Petrochenko
    Cybernetics and Systems Analysis, 1998, 34 : 337 - 350
  • [48] Some generalizations of quasi-symmetric functions and noncommutative symmetric functions
    Duchamp, G
    Hivert, F
    Thibon, JY
    FORMAL POWER SERIES AND ALGEBRAIC COMBINATORICS, 2000, : 170 - 178
  • [49] Decomposition of symmetric and partially symmetric Boolean functions in a basis of monotone functions
    Avgul, LB
    Petrochenko, AS
    CYBERNETICS AND SYSTEMS ANALYSIS, 1998, 34 (03) : 337 - 350
  • [50] Generating functions for shifted symmetric functions
    Jing, Naihuan
    Rozhkovskaya, Natasha
    JOURNAL OF COMBINATORICS, 2019, 10 (01) : 111 - 127