Exact solution of the Izergin-Korepin model with general non-diagonal boundary terms

被引:28
|
作者
Hao, Kun [1 ]
Cao, Junpeng [2 ,3 ]
Li, Guang-Liang [4 ]
Yang, Wen-Li [1 ,5 ]
Shi, Kangjie [1 ]
Wang, Yupeng [2 ,3 ]
机构
[1] NW Univ Xian, Inst Modern Phys, Xian 710069, Peoples R China
[2] Chinese Acad Sci, Beijing Nat Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[3] Collaborat Innovat Ctr Quantum Matter, Beijing, Peoples R China
[4] Xi An Jiao Tong Univ, Dept Appl Phys, Xian 710049, Peoples R China
[5] Beijing Ctr Math & Informat Interdisciplinary Sci, Beijing 100048, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Bethe Ansatz; Lattice Integrable Models; BETHE-ANSATZ SOLUTION; XXZ SPIN CHAIN; INVERSE SCATTERING METHOD; T-Q RELATION; FUNCTIONAL RELATIONS; QUANTUM CHAIN; VERTEX MODEL; ALGEBRA; SEPARATION; VARIABLES;
D O I
10.1007/JHEP06(2014)128
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The Izergin-Korepin model with general non-diagonal boundary terms, a typical integrable model beyond A-type and without U(1)-symmetry, is studied via the off-diagonal Bethe ansatz method. Based on some intrinsic properties of the R-matrix and the K-matrices, certain operator product identities of the transfer matrix are obtained at some special points of the spectral parameter. These identities and the asymptotic behaviors of the transfer matrix together allow us to construct the inhomogeneous T-Q relation and the associated Bethe ansatz equations. In the diagonal boundary limit, the reduced results coincide exactly with those obtained via other methods.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Exact solution of the Izergin-Korepin model with general non-diagonal boundary terms
    Kun Hao
    Junpeng Cao
    Guang-Liang Li
    Wen-Li Yang
    Kangjie Shi
    Yupeng Wang
    [J]. Journal of High Energy Physics, 2014
  • [2] Izergin-Korepin model with a boundary
    Yang, WL
    Zhang, YZ
    [J]. NUCLEAR PHYSICS B, 2001, 596 (03) : 495 - 512
  • [3] A REMARK ON GROUND STATE OF BOUNDARY IZERGIN-KOREPIN MODEL
    Kojima, Takeo
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2011, 26 (12): : 1973 - 1989
  • [4] Exact surface energies and boundary excitations of the Izergin-Korepin model with generic boundary fields
    Pengcheng Lu
    Junpeng Cao
    Wen-Li Yang
    Ian Marquette
    Yao-Zhong Zhang
    [J]. Journal of High Energy Physics, 2025 (2)
  • [5] The general solutions to the reflection equation of the Izergin-Korepin model
    Fan, H
    Hou, BY
    Li, GL
    Shi, KJ
    Yue, RH
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (33): : 6021 - 6032
  • [6] Link invariant of the Izergin-Korepin model
    Pant, P
    Wu, FY
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (22): : 7775 - 7782
  • [7] Bethe ansatz for the Izergin-Korepin model
    Fan, H
    [J]. NUCLEAR PHYSICS B, 1997, 488 (1-2) : 409 - 425
  • [8] A convenient basis for the Izergin-Korepin model
    Qiao, Yi
    Zhang, Xin
    Hao, Kun
    Cao, Junpeng
    Li, Guang-Liang
    Yang, Wen-Li
    Shi, Kangjie
    [J]. NUCLEAR PHYSICS B, 2018, 930 : 399 - 417
  • [9] The algebraic Bethe ansatz for the Izergin-Korepin model with open boundary conditions
    Li, GL
    Shi, KJ
    Yue, RH
    [J]. NUCLEAR PHYSICS B, 2003, 670 (03) : 401 - 438
  • [10] On the universal R-matrix for the Izergin-Korepin model
    Boos, Herman
    Goehmann, Frank
    Kluemper, Andreas
    Nirov, Khazret S.
    Razumov, Alexander V.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (35)