The general solutions to the reflection equation of the Izergin-Korepin model

被引:7
|
作者
Fan, H [1 ]
Hou, BY [1 ]
Li, GL [1 ]
Shi, KJ [1 ]
Yue, RH [1 ]
机构
[1] NW Univ Xian, Inst Modern Phys, Xian 710069, Peoples R China
来源
关键词
D O I
10.1088/0305-4470/32/33/302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain the general solutions to the reflection equation of the Izergin-Korepin model. The general solutions have two free parameters and will reduce to the non-trivial diagonal solutions when both free parameters vanish. It will also reduce to the solutions with upper-lower triangular structures when one of the parameters vanishes. Moreover, the Hamiltonian with boundary terms for the system is obtained.
引用
收藏
页码:6021 / 6032
页数:12
相关论文
共 50 条
  • [1] Izergin-Korepin model with a boundary
    Yang, WL
    Zhang, YZ
    NUCLEAR PHYSICS B, 2001, 596 (03) : 495 - 512
  • [2] Link invariant of the Izergin-Korepin model
    Pant, P
    Wu, FY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (22): : 7775 - 7782
  • [3] Bethe ansatz for the Izergin-Korepin model
    Fan, H
    NUCLEAR PHYSICS B, 1997, 488 (1-2) : 409 - 425
  • [4] A convenient basis for the Izergin-Korepin model
    Qiao, Yi
    Zhang, Xin
    Hao, Kun
    Cao, Junpeng
    Li, Guang-Liang
    Yang, Wen-Li
    Shi, Kangjie
    NUCLEAR PHYSICS B, 2018, 930 : 399 - 417
  • [5] A REMARK ON GROUND STATE OF BOUNDARY IZERGIN-KOREPIN MODEL
    Kojima, Takeo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2011, 26 (12): : 1973 - 1989
  • [6] On the universal R-matrix for the Izergin-Korepin model
    Boos, Herman
    Goehmann, Frank
    Kluemper, Andreas
    Nirov, Khazret S.
    Razumov, Alexander V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (35)
  • [7] Izergin-Korepin approach to symmetric functions
    Motegi, Kohei
    Sakai, Kazumitsu
    32ND INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (GROUP32), 2019, 1194
  • [8] Izergin-Korepin determinant at a third root of unity
    Stroganov, YG
    THEORETICAL AND MATHEMATICAL PHYSICS, 2006, 146 (01) : 53 - 62
  • [9] Exact solution of the Izergin-Korepin model with general non-diagonal boundary terms
    Kun Hao
    Junpeng Cao
    Guang-Liang Li
    Wen-Li Yang
    Kangjie Shi
    Yupeng Wang
    Journal of High Energy Physics, 2014
  • [10] Exact solution of the Izergin-Korepin model with general non-diagonal boundary terms
    Hao, Kun
    Cao, Junpeng
    Li, Guang-Liang
    Yang, Wen-Li
    Shi, Kangjie
    Wang, Yupeng
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (06):