Multi-model simulations of chicken limb morphogenesis

被引:0
|
作者
Chaturvedi, R
Izaguirre, JA [1 ]
Huang, C
Cickovski, T
Virtue, P
Thomas, G
Forgacs, G
Alber, M
Hentschel, G
Newman, SA
Glazier, JA
机构
[1] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA
[2] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA
[3] Univ Missouri, Dept Phys, Columbia, MO 65201 USA
[4] Univ Missouri, Dept Biol, Columbia, MO 65201 USA
[5] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[6] Emory Univ, Dept Phys, Atlanta, GA 30322 USA
[7] New York Med Coll, Dept Cell Biol & Anat, Valhalla, NY 10595 USA
[8] Indiana Univ, Biocomplex Inst, Bloomington, IN 47405 USA
[9] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Early development of multicellular organisms (morphogenesis) is a complex phenomenon. We present COMPUCELL, a multi-model software framework for simulations of morphogenesis. As an example, we simulate the formation of the skeletal pattern in the avian limb bud, which requires simulations based on interactions of the genetic regulatory network with generic cellular mechanisms (cell adhesion, haptotaxis, and chemotaxis). A combination of a rule-based state automaton and sets of differential equations, both subcellular ordinary differential equations (ODEs) and domain-level reaction-diffusion partial differential equations (PDEs) models genetic regulation. This regulation controls the differentiation of cells, and also cell-cell and cell-extracellular matrix interactions that give rise to cell pattern formation and cell rearrangements such as mesenchymal condensation. The cellular Potts model (CPM) models cell dynamics (cell movement and rearrangement). These models couple; COMPUCELL provides an integrated framework for such computations. Binaries for Microsoft Windows and Solaris are available(1). Source code is available on request, via email: compucell@cse.nd.edu.
引用
收藏
页码:39 / 49
页数:11
相关论文
共 50 条
  • [31] Multi-Model Inference in Biogeography
    Millington, James D. A.
    Perry, George L. W.
    GEOGRAPHY COMPASS, 2011, 5 (07): : 448 - 463
  • [32] Platform for Multi-Model Design
    Mugurel Stanciu
    Bijan Mohammadi
    Flow, Turbulence and Combustion, 2000, 65 : 431 - 452
  • [33] Improving global hydrological simulations through bias-correction and multi-model blending
    Chevuturi, Amulya
    Tanguy, Maliko
    Facer-Childs, Katie
    Martinez-de la Torre, Alberto
    Sarkar, Sunita
    Thober, Stephan
    Samaniego, Luis
    Rakovec, Oldrich
    Kelbling, Matthias
    Sutanudjaja, Edwin H.
    Wanders, Niko
    Blyth, Eleanor
    JOURNAL OF HYDROLOGY, 2023, 621
  • [34] Multi-model stereo restitution
    Dueholm, Keld S., 1600, (56):
  • [35] Multi-model subset selection
    Christidis, Anthony-Alexander
    Van Aelst, Stefan
    Zamar, Ruben
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2025, 203
  • [36] Overcoming Multi-model Forgetting
    Benyahia, Yassine
    Yu, Kaicheng
    Bennani-Smires, Kamil
    Jaggi, Martin
    Davison, Anthony
    Salzmann, Mathieu
    Musat, Claudiu
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [37] Multi-model Consistency Preservation
    Klare, Heiko
    21ST ACM/IEEE INTERNATIONAL CONFERENCE ON MODEL DRIVEN ENGINEERING LANGUAGES AND SYSTEMS: COMPANION PROCEEDINGS (MODELS-COMPANION '18), 2018, : 156 - 161
  • [38] Quantum Multi-Model Fitting
    Farina, Matteo
    Magri, Luca
    Menapace, Willi
    Ricci, Elisa
    Golyanik, Vladislav
    Arrigoni, Federica
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 13640 - 13649
  • [39] A Framework for Multi-Model Ensembling
    Berliner, L. Mark
    Brynjarsdottir, Jenny
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 902 - 923
  • [40] Multi-Model Repetitive Control
    Zhou Keliang
    Lu Wenzhou
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 2219 - 2222