Multi-model simulations of chicken limb morphogenesis

被引:0
|
作者
Chaturvedi, R
Izaguirre, JA [1 ]
Huang, C
Cickovski, T
Virtue, P
Thomas, G
Forgacs, G
Alber, M
Hentschel, G
Newman, SA
Glazier, JA
机构
[1] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA
[2] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA
[3] Univ Missouri, Dept Phys, Columbia, MO 65201 USA
[4] Univ Missouri, Dept Biol, Columbia, MO 65201 USA
[5] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[6] Emory Univ, Dept Phys, Atlanta, GA 30322 USA
[7] New York Med Coll, Dept Cell Biol & Anat, Valhalla, NY 10595 USA
[8] Indiana Univ, Biocomplex Inst, Bloomington, IN 47405 USA
[9] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Early development of multicellular organisms (morphogenesis) is a complex phenomenon. We present COMPUCELL, a multi-model software framework for simulations of morphogenesis. As an example, we simulate the formation of the skeletal pattern in the avian limb bud, which requires simulations based on interactions of the genetic regulatory network with generic cellular mechanisms (cell adhesion, haptotaxis, and chemotaxis). A combination of a rule-based state automaton and sets of differential equations, both subcellular ordinary differential equations (ODEs) and domain-level reaction-diffusion partial differential equations (PDEs) models genetic regulation. This regulation controls the differentiation of cells, and also cell-cell and cell-extracellular matrix interactions that give rise to cell pattern formation and cell rearrangements such as mesenchymal condensation. The cellular Potts model (CPM) models cell dynamics (cell movement and rearrangement). These models couple; COMPUCELL provides an integrated framework for such computations. Binaries for Microsoft Windows and Solaris are available(1). Source code is available on request, via email: compucell@cse.nd.edu.
引用
收藏
页码:39 / 49
页数:11
相关论文
共 50 条
  • [41] Platform for multi-model design
    Stanciu, M
    Mohammadi, B
    FLOW TURBULENCE AND COMBUSTION, 2000, 65 (3-4) : 431 - 452
  • [42] Multi-Model Visual Localization
    Ozden, Kemal Egemen
    Tozlu, Mehmet
    Ergut, Salih
    2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [43] Nonlinear Multi-Model Reuse
    Luo, Yong
    Duan, Ling-Yu
    Bai, Yan
    Liu, Tongliang
    Lou, Yihang
    Wen, Yonggang
    2022 IEEE 24TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2022,
  • [44] Multi-model Animation with JeB
    Jacquot, Jean-Pierre
    RIGOROUS STATE-BASED METHODS, ABZ 2024, 2024, 14759 : 223 - 232
  • [45] Towards a multi-model of biorefinery?
    Nieddu, Martino
    Garnier, Estelle
    BIOFUTUR, 2010, (312) : 65 - 68
  • [46] Multi-model Forecasting for Finance
    Pellattiero, Daniel Jader
    Candelieri, Antonio
    MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE, MAF2024, 2024, : 248 - 254
  • [47] Multi-model yield projections
    Timothy R. Carter
    Nature Climate Change, 2013, 3 : 784 - 786
  • [48] Main steam temperature multi-model prediction and control method based on a multi-model set
    Liu, Ji-Zhen
    Yue, Jun-Hong
    Tan, Wen
    Reneng Dongli Gongcheng/Journal of Engineering for Thermal Energy and Power, 2008, 23 (04): : 395 - 398
  • [49] Budding Behaviors: Growth of the Limb as a Model of Morphogenesis
    Hopyan, Sevan
    Sharpe, James
    Yang, Yingzi
    DEVELOPMENTAL DYNAMICS, 2011, 240 (05) : 1054 - 1062
  • [50] Multi-Model Evolution through Model Repair
    Stuenkel, Patrick
    Koenig, Harald
    Rutle, Adrian
    Lamo, Yngve
    JOURNAL OF OBJECT TECHNOLOGY, 2021, 20 (01): : 1 - 25