Quantum Multi-Model Fitting

被引:1
|
作者
Farina, Matteo [1 ]
Magri, Luca [2 ]
Menapace, Willi [1 ]
Ricci, Elisa [1 ,3 ]
Golyanik, Vladislav [4 ]
Arrigoni, Federica [2 ]
机构
[1] Univ Trento, Trento, Italy
[2] Politecn Milan, Milan, Italy
[3] Fdn Bruno Kessler, Trento, Italy
[4] MPI Informat, SIC, Saarbrucken, Germany
关键词
ALGORITHM; CONSENSUS;
D O I
10.1109/CVPR52729.2023.01311
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Geometric model fitting is a challenging but fundamental computer vision problem. Recently, quantum optimization has been shown to enhance robust fitting for the case of a single model, while leaving the question of multi-model fitting open. In response to this challenge, this paper shows that the latter case can significantly benefit from quantum hardware and proposes the first quantum approach to multi-model fitting (MMF). We formulate MMF as a problem that can be efficiently sampled by modern adiabatic quantum computers without the relaxation of the objective function. We also propose an iterative and decomposed version of our method, which supports real-world-sized problems. The experimental evaluation demonstrates promising results on a variety of datasets. The source code is available at: https://github.com/FarinaMatteo/qmmf.
引用
收藏
页码:13640 / 13649
页数:10
相关论文
共 50 条
  • [1] Energy-Based Geometric Multi-model Fitting
    Isack, Hossam
    Boykov, Yuri
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2012, 97 (02) : 123 - 147
  • [2] Geometric Multi-Model Fitting with a Convex Relaxation Algorithm
    Amayo, Paul
    Pinies, Pedro
    Paz, Lina M.
    Newman, Paul
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8138 - 8146
  • [3] Energy-Based Geometric Multi-model Fitting
    Hossam Isack
    Yuri Boykov
    International Journal of Computer Vision, 2012, 97 : 123 - 147
  • [4] A Global Optimization Approach to Robust Multi-Model Fitting
    Yu, Jin
    Chin, Tat-Jun
    Suter, David
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011,
  • [5] Geometric Multi-Model Fitting by Deep Reinforcement Learning
    Zhang, Zongliang
    Zeng, Hongbin
    Li, Jonathan
    Chen, Yiping
    Yang, Chenhui
    Wang, Cheng
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 10081 - 10082
  • [6] Robust Multi-Model Fitting Using Density and Preference Analysis
    Tiwari, Lokender
    Anand, Saket
    Mittal, Sushil
    COMPUTER VISION - ACCV 2016, PT IV, 2017, 10114 : 308 - 323
  • [7] Multi-model geometrical fitting for wide baseline image matching
    Fan, Lixin
    Pylvanainen, Timo
    IMAGE PROCESSING: MACHINE VISION APPLICATIONS, 2008, 6813
  • [8] CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus
    Kluger, Florian
    Brachmann, Eric
    Ackermann, Hanno
    Rother, Carsten
    Yang, Michael Ying
    Rosenhahn, Bodo
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 4633 - 4642
  • [9] Splitting and Merging Based Multi-model Fitting for Point Cloud Segmentation
    Liangpei ZHANG
    Yun ZHANG
    Zhenzhong CHEN
    Peipei XIAO
    Bin LUO
    Journal of Geodesy and Geoinformation Science, 2019, 2 (02) : 78 - 89
  • [10] Progressive-X: Efficient, Anytime, Multi-Model Fitting Algorithm
    Barath, Daniel
    Matas, Jiri
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 3779 - 3787