A MACHINE LEARNING FRAMEWORK FOR REAL DATA GNSS-R WIND SPEED RETRIEVAL

被引:0
|
作者
Liu, Yunxiang [1 ]
Wang, Jun [1 ]
Collett, Ian [1 ]
Morton, Y. Jade [1 ]
机构
[1] Univ Colorado, Colorado Ctr Astrodynam Res, Smead Aerosp Engn Sci, Boulder, CO 80309 USA
关键词
CYGNSS; GNSS-R; wind speed retrieval; machine learning; feature engineering; multi-hidden layer neural network;
D O I
10.1109/igarss.2019.8899792
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, we propose a machine learning framework to conduct GNSS-R wind speed retrieval. While the conventional method tries to retrieve wind speed using a single scalar value, the proposed framework is capable of incorporating and employing more features such as DDM and incidence angle. The results show that the proposed framework outperforms the conventional retrieval method with a notable margin.
引用
收藏
页码:8707 / 8710
页数:4
相关论文
共 50 条
  • [1] Spaceborne GNSS-R Wind Speed Retrieval Using Machine Learning Methods
    Wang, Changyang
    Yu, Kegen
    Qu, Fangyu
    Bu, Jinwei
    Han, Shuai
    Zhang, Kefei
    [J]. REMOTE SENSING, 2022, 14 (14)
  • [2] Improved Ocean Wind Speed Retrieval Using GNSS-R, Stare Processing, and Machine Learning
    Anderson, Sophie G.
    Liu, Yunxiang
    Collett, Ian
    Morton, Y. Jade
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6775 - 6778
  • [3] Wind Speed Retrieval Method for Shipborne GNSS-R
    Qin, Lingyu
    Li, Ying
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [4] Multimodal Deep Learning for Heterogeneous GNSS-R Data Fusion and Ocean Wind Speed Retrieval
    Chu, Xiaohan
    He, Jie
    Song, Hongqing
    Qi, Yue
    Sun, Yueqiang
    Bai, Weihua
    Li, Wei
    Wu, Qiwu
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 5971 - 5981
  • [5] Stare Processing Improves GNSS-R, Machine Learning-Based Ocean Wind Speed Retrieval
    Anderson, Sophie G.
    Liu, Yunxiang
    Collett, Ian
    Morton, Y. Jade
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 4080 - 4083
  • [6] Application of Neural Network to GNSS-R Wind Speed Retrieval
    Liu, Yunxiang
    Collett, Ian
    Morton, Y. Jade
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (12): : 9756 - 9766
  • [7] A GNSS-R Geophysical Model Function: Machine Learning for Wind Speed Retrievals
    Asgarimehr, Milad
    Zhelavskaya, Irina
    Foti, Giuseppe
    Reich, Sebastian
    Wickert, Jens
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (08) : 1333 - 1337
  • [8] GNSS-R Global Sea Surface Wind Speed Retrieval Based on Deep Learning
    Liu, Xiaoxu
    Bai, Weihua
    Tan, Guangyuan
    Huang, Feixiong
    Xia, Junming
    Yin, Cong
    Sun, Yueqiang
    Du, Qifei
    Meng, Xiangguang
    Liu, Congliang
    Hu, Peng
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [9] Ocean Surface Wind Speed Retrieval Using Spaceborne GNSS-R
    Yang Dongkai
    Liu Yi
    Wang Feng
    [J]. JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (02) : 462 - 469
  • [10] Wind speed retrieval using GNSS-R technique with geographic partitioning
    Li, Zheng
    Guo, Fei
    Chen, Fade
    Zhang, Zhiyu
    Zhang, Xiaohong
    [J]. SATELLITE NAVIGATION, 2023, 4 (01):