A MACHINE LEARNING FRAMEWORK FOR REAL DATA GNSS-R WIND SPEED RETRIEVAL

被引:0
|
作者
Liu, Yunxiang [1 ]
Wang, Jun [1 ]
Collett, Ian [1 ]
Morton, Y. Jade [1 ]
机构
[1] Univ Colorado, Colorado Ctr Astrodynam Res, Smead Aerosp Engn Sci, Boulder, CO 80309 USA
关键词
CYGNSS; GNSS-R; wind speed retrieval; machine learning; feature engineering; multi-hidden layer neural network;
D O I
10.1109/igarss.2019.8899792
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, we propose a machine learning framework to conduct GNSS-R wind speed retrieval. While the conventional method tries to retrieve wind speed using a single scalar value, the proposed framework is capable of incorporating and employing more features such as DDM and incidence angle. The results show that the proposed framework outperforms the conventional retrieval method with a notable margin.
引用
收藏
页码:8707 / 8710
页数:4
相关论文
共 50 条
  • [31] THE EMPIRICAL ORTHOGONAL FUNCTION THEORY AND SIMULATION RESEARCH FOR SPACEBORNE GNSS-R SEA SURFACE HIGH WIND SPEED RETRIEVAL
    Wu, J. M.
    Chen, Y. L.
    Guo, P.
    Wang, X. Y.
    Hu, X. G.
    Wu, M. J.
    Li, F. H.
    Fu, N. F.
    2021 IEEE SPECIALIST MEETING ON REFLECTOMETRY USING GNSS AND OTHER SIGNALS OF OPPORTUNITY 2021 (GNSS+R 2021), 2021, : 65 - 68
  • [32] A Real-Time GNSS-R System for Monitoring Sea Surface Wind Speed and Significant Wave Height
    Xing, Jin
    Yu, Baoguo
    Yang, Dongkai
    Li, Jie
    Shi, Zhejia
    Zhang, Guodong
    Wang, Feng
    SENSORS, 2022, 22 (10)
  • [33] Wind Speed Maping from the ISS Using GNSS-R? A Simulation Study
    Camps, A.
    Park, H.
    Alonso-Arroyo, A.
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 382 - 385
  • [34] EVALUATION OF CYGNSS GNSS-R SIGNAL SENSITIVITY TO OCEAN PARAMETERS AND WIND RETRIEVAL ASSESMENT
    Chang, Paul S.
    Soisuvarn, Seubson
    Said, Faozi
    Jelenak, Zorana
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2650 - 2653
  • [35] Comprehensive Analysis of CYGNSS GNSS-R Data for Enhanced Soil Moisture Retrieval
    Setti, Paulo
    Tabibi, Sajad
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 663 - 679
  • [36] Retrieval of Sea Surface Rainfall Intensity Using Spaceborne GNSS-R Data
    Bu, Jinwei
    Yu, Kegen
    Han, Shuai
    Qian, Nijia
    Lin, Yiruo
    Wang, Jin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [37] Improving GNSS-R Ocean Wind Speed Retrieval for the BF-1 Mission Using Satellite Platform Attitude Measurements
    Chen, Chenxin
    Wang, Xiaoyu
    Bian, Zhao
    Wei, Haoyun
    Fan, Dongdong
    Bai, Zhaoguang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 2121 - 2133
  • [38] Evaluation of Spaceborne GNSS-R Retrieved Ocean Surface Wind Speed with Multiple Datasets
    Dong, Zhounan
    Jin, Shuanggen
    REMOTE SENSING, 2019, 11 (23)
  • [39] GNSS-R sea surface wind speed inversion based on BP neural network
    Gao H.
    Bai Z.
    Fan D.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2019, 40 (12):
  • [40] Adaptively CDF Matching Method in GNSS⁃R Wind Speed Retrieval
    Du H.
    Guo W.
    Guo C.
    Lu P.
    Ye S.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2021, 46 (12): : 1924 - 1931