A MACHINE LEARNING FRAMEWORK FOR REAL DATA GNSS-R WIND SPEED RETRIEVAL

被引:0
|
作者
Liu, Yunxiang [1 ]
Wang, Jun [1 ]
Collett, Ian [1 ]
Morton, Y. Jade [1 ]
机构
[1] Univ Colorado, Colorado Ctr Astrodynam Res, Smead Aerosp Engn Sci, Boulder, CO 80309 USA
关键词
CYGNSS; GNSS-R; wind speed retrieval; machine learning; feature engineering; multi-hidden layer neural network;
D O I
10.1109/igarss.2019.8899792
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, we propose a machine learning framework to conduct GNSS-R wind speed retrieval. While the conventional method tries to retrieve wind speed using a single scalar value, the proposed framework is capable of incorporating and employing more features such as DDM and incidence angle. The results show that the proposed framework outperforms the conventional retrieval method with a notable margin.
引用
收藏
页码:8707 / 8710
页数:4
相关论文
共 50 条
  • [21] Information fusion for GNSS-R wind speed retrieval using statistically modified convolutional neural network
    Guo, Wenfei
    Du, Hao
    Guo, Chi
    Southwell, Benjamin J.
    Cheong, Joon Wayn
    Dempster, Andrew G.
    REMOTE SENSING OF ENVIRONMENT, 2022, 272
  • [22] GNSS-R Ocean Wind Speed Retrieval Algorithm Based on Fusing Frequency-Domain Information
    Liu, Hongchen
    Hou, Yonghong
    Jiang, Shuang
    Huang, Meiyan
    Qu, Hongbo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [23] CALIBRATION AND WIND SPEED RETRIEVAL FOR THE FENGYUN-3 E METEOROLOGICAL SATELLITE GNSS-R MISSION
    Xia, Junming
    Bai, Weihua
    Sun, Yueqiang
    Du, Qifei
    Huang, Feixiong
    Yin, Cong
    Duan, Lichang
    Huang, Lingyong
    Hu, Xiuqing
    Xu, Na
    Yang, Guanglin
    Xiao, Xianjun
    Zhai, Xiaochun
    Liu, Cheng
    Wang, Xianyi
    Li, Fu
    Liu, Congliang
    Meng, Xiangguang
    Cai, Yuerong
    Li, Wei
    Tan, Guangyuan
    Hu, Peng
    2021 IEEE SPECIALIST MEETING ON REFLECTOMETRY USING GNSS AND OTHER SIGNALS OF OPPORTUNITY 2021 (GNSS+R 2021), 2021, : 25 - 28
  • [24] Wind Direction Retrieval Using Spaceborne GNSS-R in Nonspecular Geometry
    Zhang, Guodong
    Yang, Dongkai
    Yu, Yongqing
    Wang, Feng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 649 - 658
  • [25] Desert Roughness Retrieval Using CYGNSS GNSS-R Data
    Stilla, Donato
    Zribi, Mehrez
    Pierdicca, Nazzareno
    Baghdadi, Nicolas
    Huc, Mireille
    REMOTE SENSING, 2020, 12 (04)
  • [26] Sea Surface Wind Speed Retrieval from the First Chinese GNSS-R Mission: Technique and Preliminary Results
    Jing, Cheng
    Niu, Xinliang
    Duan, Chongdi
    Lu, Feng
    Di, Guodong
    Yang, Xiaofeng
    REMOTE SENSING, 2019, 11 (24)
  • [27] Wind speed retrieval for BF-1 GNSS-R satellites using geophysical model function method
    Fan, Dongdong
    Lu, Minjian
    Chen, Chenxin
    Gao, Han
    Wei, Haoyun
    CHINESE SPACE SCIENCE AND TECHNOLOGY, 2022, 42 (02) : 125 - 133
  • [28] NEW APPROACH TO SEA SURFACE WIND RETRIEVAL FROM GNSS-R MEASUREMENTS
    Park, Hyuk
    Valencia, Enric
    Rodriguez-Alvarez, Nereida
    Bosch-Lluis, Xavier
    Ramos-Perez, Isaac
    Camps, Adriano
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1469 - 1472
  • [29] GNSS-R Soil Moisture Retrieval Based on a XGboost Machine Learning Aided Method: Performance and Validation
    Jia, Yan
    Jin, Shuanggen
    Savi, Patrizia
    Gao, Yun
    Tang, Jing
    Chen, Yixiang
    Li, Wenmei
    REMOTE SENSING, 2019, 11 (14)
  • [30] A GENERALIZED LINEAR OBSERVABLE FOR GNSS-R WIND SPEED RETRIEVALS OVER THE OCEAN
    Rodriguez-Alvarez, Nereida
    Garrison, James L.
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 3810 - 3813