Application of Neural Network to GNSS-R Wind Speed Retrieval

被引:64
|
作者
Liu, Yunxiang [1 ]
Collett, Ian [1 ]
Morton, Y. Jade [1 ]
机构
[1] Univ Colorado Boulder, Smead Aerosp Engn Sci Dept, Boulder, CO 80309 USA
来源
关键词
Advanced Scatterometer (ASCAT); cyclone global navigation satellite system (CYGNSS); deep learning; delay-Doppler map (DDM); GNSS-reflectometry (GNSS-R); multi-hidden layer neural network (MHL-NN); spaceborne remote sensing; wind speed retrieval; GPS SIGNALS; OCEAN; SCATTERING;
D O I
10.1109/TGRS.2019.2929002
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper applies a machine learning (ML) algorithm based on the multi-hidden layer neural network (MHL-NN) for ocean surface wind speed estimation using global navigation satellite system (GNSS) reflection measurements. Unlike conventional wind speed retrieval methods that often depend on limited scalar delay-Doppler map (DDM) observables, the proposed MHL-NN makes use of information captured by the entire DDM. Both simulated and real data sets are used to train and evaluate the performance of the MHL-NN and compare it to a conventional wind speed retrieval method and other prevailing ML algorithms. The results show that the MHL-NN algorithm outperforms the other methods in terms of the root mean square error (RMSE) and mean absolute percentage error (MAPE) of the wind speed estimation.
引用
收藏
页码:9756 / 9766
页数:11
相关论文
共 50 条
  • [1] Wind Speed Retrieval Method for Shipborne GNSS-R
    Qin, Lingyu
    Li, Ying
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [2] FA-RDN: A Hybrid Neural Network on GNSS-R Sea Surface Wind Speed Retrieval
    Liu, Xiaoxu
    Bai, Weihua
    Xia, Junming
    Huang, Feixiong
    Yin, Cong
    Sun, Yueqiang
    Du, Qifei
    Meng, Xiangguang
    Liu, Congliang
    Hu, Peng
    Tan, Guangyuan
    REMOTE SENSING, 2021, 13 (23)
  • [3] Information fusion for GNSS-R wind speed retrieval using statistically modified convolutional neural network
    Guo, Wenfei
    Du, Hao
    Guo, Chi
    Southwell, Benjamin J.
    Cheong, Joon Wayn
    Dempster, Andrew G.
    REMOTE SENSING OF ENVIRONMENT, 2022, 272
  • [4] GNSS-R sea surface wind speed inversion based on BP neural network
    Gao H.
    Bai Z.
    Fan D.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2019, 40 (12):
  • [5] Ocean Surface Wind Speed Retrieval Using Spaceborne GNSS-R
    Yang Dongkai
    Liu Yi
    Wang Feng
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (02) : 462 - 469
  • [6] Wind speed retrieval using GNSS-R technique with geographic partitioning
    Zheng Li
    Fei Guo
    Fade Chen
    Zhiyu Zhang
    Xiaohong Zhang
    Satellite Navigation, 2023, 4
  • [7] Wind speed retrieval using GNSS-R technique with geographic partitioning
    Li, Zheng
    Guo, Fei
    Chen, Fade
    Zhang, Zhiyu
    Zhang, Xiaohong
    SATELLITE NAVIGATION, 2023, 4 (01):
  • [8] Deep residual fully connected network for GNSS-R wind speed retrieval and its interpretation
    Du, Hao
    Li, Weiqiang
    Cardellach, Estel
    Ribo, Serni
    Rius, Antonio
    Nan, Yang
    REMOTE SENSING OF ENVIRONMENT, 2024, 313
  • [9] Spaceborne GNSS-R Wind Speed Retrieval Using Machine Learning Methods
    Wang, Changyang
    Yu, Kegen
    Qu, Fangyu
    Bu, Jinwei
    Han, Shuai
    Zhang, Kefei
    REMOTE SENSING, 2022, 14 (14)
  • [10] A MACHINE LEARNING FRAMEWORK FOR REAL DATA GNSS-R WIND SPEED RETRIEVAL
    Liu, Yunxiang
    Wang, Jun
    Collett, Ian
    Morton, Y. Jade
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 8707 - 8710