Application of Neural Network to GNSS-R Wind Speed Retrieval

被引:64
|
作者
Liu, Yunxiang [1 ]
Collett, Ian [1 ]
Morton, Y. Jade [1 ]
机构
[1] Univ Colorado Boulder, Smead Aerosp Engn Sci Dept, Boulder, CO 80309 USA
来源
关键词
Advanced Scatterometer (ASCAT); cyclone global navigation satellite system (CYGNSS); deep learning; delay-Doppler map (DDM); GNSS-reflectometry (GNSS-R); multi-hidden layer neural network (MHL-NN); spaceborne remote sensing; wind speed retrieval; GPS SIGNALS; OCEAN; SCATTERING;
D O I
10.1109/TGRS.2019.2929002
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper applies a machine learning (ML) algorithm based on the multi-hidden layer neural network (MHL-NN) for ocean surface wind speed estimation using global navigation satellite system (GNSS) reflection measurements. Unlike conventional wind speed retrieval methods that often depend on limited scalar delay-Doppler map (DDM) observables, the proposed MHL-NN makes use of information captured by the entire DDM. Both simulated and real data sets are used to train and evaluate the performance of the MHL-NN and compare it to a conventional wind speed retrieval method and other prevailing ML algorithms. The results show that the MHL-NN algorithm outperforms the other methods in terms of the root mean square error (RMSE) and mean absolute percentage error (MAPE) of the wind speed estimation.
引用
收藏
页码:9756 / 9766
页数:11
相关论文
共 50 条
  • [21] Wind Direction Retrieval Using Spaceborne GNSS-R in Nonspecular Geometry
    Zhang, Guodong
    Yang, Dongkai
    Yu, Yongqing
    Wang, Feng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 649 - 658
  • [22] Multifeature GNSS-R Snow Depth Retrieval Using GA-BP Neural Network
    Liu, Wei
    Yuan, Xintai
    Hu, Yuan
    Wickert, Jens
    Jiang, Zhihao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [23] Sea Surface Wind Speed Retrieval from the First Chinese GNSS-R Mission: Technique and Preliminary Results
    Jing, Cheng
    Niu, Xinliang
    Duan, Chongdi
    Lu, Feng
    Di, Guodong
    Yang, Xiaofeng
    REMOTE SENSING, 2019, 11 (24)
  • [24] Wind speed retrieval for BF-1 GNSS-R satellites using geophysical model function method
    Fan, Dongdong
    Lu, Minjian
    Chen, Chenxin
    Gao, Han
    Wei, Haoyun
    CHINESE SPACE SCIENCE AND TECHNOLOGY, 2022, 42 (02) : 125 - 133
  • [25] NEW APPROACH TO SEA SURFACE WIND RETRIEVAL FROM GNSS-R MEASUREMENTS
    Park, Hyuk
    Valencia, Enric
    Rodriguez-Alvarez, Nereida
    Bosch-Lluis, Xavier
    Ramos-Perez, Isaac
    Camps, Adriano
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1469 - 1472
  • [26] Integrating spaceborne GNSS-R and SMOS for sea surface salinity retrieval using artificial neural network
    Li, Zheng
    Guo, Fei
    Zhang, Xiaohong
    Zhang, Zhiyu
    Zhu, Yifan
    Yang, Wentao
    Wu, Ziheng
    Yue, Liming
    GPS SOLUTIONS, 2024, 28 (04)
  • [27] A GENERALIZED LINEAR OBSERVABLE FOR GNSS-R WIND SPEED RETRIEVALS OVER THE OCEAN
    Rodriguez-Alvarez, Nereida
    Garrison, James L.
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 3810 - 3813
  • [28] THE EMPIRICAL ORTHOGONAL FUNCTION THEORY AND SIMULATION RESEARCH FOR SPACEBORNE GNSS-R SEA SURFACE HIGH WIND SPEED RETRIEVAL
    Wu, J. M.
    Chen, Y. L.
    Guo, P.
    Wang, X. Y.
    Hu, X. G.
    Wu, M. J.
    Li, F. H.
    Fu, N. F.
    2021 IEEE SPECIALIST MEETING ON REFLECTOMETRY USING GNSS AND OTHER SIGNALS OF OPPORTUNITY 2021 (GNSS+R 2021), 2021, : 65 - 68
  • [29] Hybrid CNN-LSTM Deep Learning for Track-Wise GNSS-R Ocean Wind Speed Retrieval
    Arabi, Sima
    Asgarimehr, Milad
    Kada, Martin
    Wickert, Jens
    REMOTE SENSING, 2023, 15 (17)
  • [30] Wind Speed Maping from the ISS Using GNSS-R? A Simulation Study
    Camps, A.
    Park, H.
    Alonso-Arroyo, A.
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 382 - 385