Octonions in random matrix theory

被引:1
|
作者
Forrester, Peter J. [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, ARC Ctr Excellence Math & Stat Frontiers, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
random matrices; octonions; Jordan algebras; STATISTICAL THEORY; COMPLEX SYSTEMS; DYSON PROCESSES; ENERGY LEVELS; DISTRIBUTIONS; MODELS; CONES;
D O I
10.1098/rspa.2016.0800
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The octonions are one of the four normed division algebras, together with the real, complex and quaternion number systems. The latter three hold a primary place in random matrix theory, where in applications to quantum physics they are determined as the entries of ensembles of Hermitian random matrices by symmetry considerations. Only for N = 2 is there an existing analytic theory of Hermitian random matrices with octonion entries. We use a Jordan algebra viewpoint to provide an analytic theory for N = 3. We then proceed to consider the matrix structure X+X, when X has random octonion entries. Analytic results are obtained from N = 2, but are observed to break down in the 3 x 3 case.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Nonlinear Perturbation of Random Matrix Theory
    Frahm, Klaus M.
    Shepelyansky, Dima L.
    PHYSICAL REVIEW LETTERS, 2023, 131 (07)
  • [42] Quantum dynamics and random matrix theory
    Kunz, H
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2002, 16 (14-15): : 2003 - 2008
  • [43] Tests of random matrix theory in nuclei
    Mitchell, GE
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2001, 9 (03): : 424 - 428
  • [44] Diffusion method in random matrix theory
    Grela, Jacek
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (01)
  • [45] FOUNDATIONS OF RANDOM MATRIX-THEORY
    GIRKO, VL
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1974, 19 (03): : 645 - 649
  • [46] On Random Matrix Theory and Autoregressive Modeling
    Solo, Victor
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 4527 - 4532
  • [47] Path counting and random matrix theory
    Dumitriu, I
    Rassart, E
    ELECTRONIC JOURNAL OF COMBINATORICS, 2003, 10 (01):
  • [48] Random matrix theory and symmetric spaces
    Caselle, M
    Magnea, U
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2004, 394 (2-3): : 41 - 156
  • [49] Centrality of the collision and random matrix theory
    Wazir, Z.
    CHINESE PHYSICS C, 2010, 34 (10) : 1593 - 1597
  • [50] Random Matrix Theory of Resonances: an Overview
    Fyodorov, Yan V.
    2016 URSI INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC THEORY (EMTS), 2016, : 666 - 669