Octonions in random matrix theory

被引:1
|
作者
Forrester, Peter J. [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, ARC Ctr Excellence Math & Stat Frontiers, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
random matrices; octonions; Jordan algebras; STATISTICAL THEORY; COMPLEX SYSTEMS; DYSON PROCESSES; ENERGY LEVELS; DISTRIBUTIONS; MODELS; CONES;
D O I
10.1098/rspa.2016.0800
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The octonions are one of the four normed division algebras, together with the real, complex and quaternion number systems. The latter three hold a primary place in random matrix theory, where in applications to quantum physics they are determined as the entries of ensembles of Hermitian random matrices by symmetry considerations. Only for N = 2 is there an existing analytic theory of Hermitian random matrices with octonion entries. We use a Jordan algebra viewpoint to provide an analytic theory for N = 3. We then proceed to consider the matrix structure X+X, when X has random octonion entries. Analytic results are obtained from N = 2, but are observed to break down in the 3 x 3 case.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Raney Distributions and Random Matrix Theory
    Peter J. Forrester
    Dang-Zheng Liu
    Journal of Statistical Physics, 2015, 158 : 1051 - 1082
  • [32] Dynamical approach to random matrix theory
    Tao, Terence
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 57 (01) : 161 - 169
  • [33] Tensor product random matrix theory
    Altland, Alexander
    de Miranda, Joaquim Telles
    Micklitz, Tobias
    PHYSICAL REVIEW RESEARCH, 2024, 6 (04):
  • [34] Random matrix theory and the Anderson model
    Bellissard, J
    JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) : 739 - 754
  • [35] Random Matrix Theory in Cd isotopes
    Majarshin, A. J.
    Luo, Yan-An
    Pan, Feng
    Draayer, Jerry P.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2021, 48 (10)
  • [36] Random matrix theory and mesoscopic fluctuations
    Seba, P
    PHYSICAL REVIEW B, 1996, 53 (19): : 13024 - 13028
  • [37] Law of addition in random matrix theory
    Zee, A
    NUCLEAR PHYSICS B, 1996, 474 (03) : 726 - 744
  • [38] Riemann Zeros and Random Matrix Theory
    N. C. Snaith
    Milan Journal of Mathematics, 2010, 78 : 135 - 152
  • [39] Extremal correlators and random matrix theory
    Grassi, Alba
    Komargodski, Zohar
    Tizzano, Luigi
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (04)
  • [40] Random Matrix Theory and the Anderson Model
    Jean Bellissard
    Journal of Statistical Physics, 2004, 116 : 739 - 754