Octonions in random matrix theory

被引:1
|
作者
Forrester, Peter J. [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, ARC Ctr Excellence Math & Stat Frontiers, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
random matrices; octonions; Jordan algebras; STATISTICAL THEORY; COMPLEX SYSTEMS; DYSON PROCESSES; ENERGY LEVELS; DISTRIBUTIONS; MODELS; CONES;
D O I
10.1098/rspa.2016.0800
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The octonions are one of the four normed division algebras, together with the real, complex and quaternion number systems. The latter three hold a primary place in random matrix theory, where in applications to quantum physics they are determined as the entries of ensembles of Hermitian random matrices by symmetry considerations. Only for N = 2 is there an existing analytic theory of Hermitian random matrices with octonion entries. We use a Jordan algebra viewpoint to provide an analytic theory for N = 3. We then proceed to consider the matrix structure X+X, when X has random octonion entries. Analytic results are obtained from N = 2, but are observed to break down in the 3 x 3 case.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Some Matrix Representations of Fibonacci Quaternions and Octonions
    Serpil Halici
    Adnan Karataş
    Advances in Applied Clifford Algebras, 2017, 27 : 1233 - 1242
  • [22] BEYOND UNIVERSALITY IN RANDOM MATRIX THEORY
    Edelman, Alan
    Guionnet, A.
    Peche, S.
    ANNALS OF APPLIED PROBABILITY, 2016, 26 (03): : 1659 - 1697
  • [23] Law of addition in random matrix theory
    Zee, A.
    Nuclear Physics, Section B, 474 (03):
  • [24] Action correlations and random matrix theory
    Smilansky, U
    Verdene, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12): : 3525 - 3549
  • [25] Random matrix theory and the zeros of ζ′(s)
    Mezzadri, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12): : 2945 - 2962
  • [26] Raney Distributions and Random Matrix Theory
    Forrester, Peter J.
    Liu, Dang-Zheng
    JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (05) : 1051 - 1082
  • [27] Logarithmic universality in random matrix theory
    Splittorff, K
    NUCLEAR PHYSICS B, 1999, 548 (1-3) : 613 - 625
  • [28] Staggered chiral random matrix theory
    Osborn, James C.
    PHYSICAL REVIEW D, 2011, 83 (03):
  • [29] Quantum fluctuations and random matrix theory
    Duras, MM
    FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS, 2003, 5111 : 456 - 459
  • [30] Centrality of the collision and random matrix theory
    Z.Wazir
    中国物理C, 2010, (10) : 1593 - 1597