Byzantine-Resilient Decentralized Policy Evaluation With Linear Function Approximation

被引:11
|
作者
Wu, Zhaoxian [1 ,2 ,3 ]
Shen, Han [4 ]
Chen, Tianyi [4 ]
Ling, Qing [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510006, Guangdong, Peoples R China
[3] Pazhou Lab, Guangzhou 510300, Guangdong, Peoples R China
[4] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA
基金
中国国家自然科学基金;
关键词
Signal processing algorithms; Convergence; Function approximation; Optimization; Approximation algorithms; Task analysis; Mathematical model; Policy evaluation; multi-agent reinforcement learning; temporal-difference learning; Byzantine attacks; DISTRIBUTED OPTIMIZATION; CONVERGENCE; ALGORITHMS;
D O I
10.1109/TSP.2021.3090952
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we consider the policy evaluation problem in reinforcement learning with agents on a decentralized and directed network. In order to evaluate the quality of a fixed policy in this decentralized setting, one option is for agents to run decentralized temporal-difference (TD) collaboratively. To account for the practical scenarios where the state and action spaces are large and malicious attacks emerge, we focus on the decentralized TD learning with linear function approximation in the presence of malicious agents (often termed as Byzantine agents). We propose a trimmed mean-based Byzantine-resilient decentralized TD algorithm to perform policy evaluation in this setting. We establish the finite-time convergence rate, as well as the asymptotic learning error that depends on the number of Byzantine agents. Numerical experiments corroborate the robustness of the proposed algorithm.
引用
收藏
页码:3839 / 3853
页数:15
相关论文
共 50 条
  • [31] Byzantine-Resilient Multi-Agent System
    Guerraoui, Rachid
    Maurer, Alexandre
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022, 19 (06) : 4032 - 4038
  • [32] SIoTFog: Byzantine-resilient IoT fog networking
    Xu, Jian-wen
    Ota, Kaoru
    Dong, Mian-xiong
    Liu, An-feng
    Li, Qiang
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2018, 19 (12) : 1546 - 1557
  • [33] Low Complexity Byzantine-Resilient Federated Learning
    Gouissem, A.
    Hassanein, S.
    Abualsaud, K.
    Yaacoub, E.
    Mabrok, M.
    Abdallah, M.
    Khattab, T.
    Guizani, M.
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 2051 - 2066
  • [34] Fully decentralized privacy-enabled Federated Learning system based on Byzantine-resilient consensus protocol
    Ferenczi, Andras
    Badica, Costin
    SIMULATION MODELLING PRACTICE AND THEORY, 2024, 136
  • [35] Byzantine-resilient dual gossip membership management in clouds
    JongBeom Lim
    Kwang-Sik Chung
    HwaMin Lee
    Kangbin Yim
    Heonchang Yu
    Soft Computing, 2018, 22 : 3011 - 3022
  • [36] Byzantine-Resilient SGD in High Dimensions on Heterogeneous Data
    Data, Deepesh
    Diggavi, Suhas
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 2310 - 2315
  • [37] Byzantine-Resilient High-Dimensional Federated Learning
    Data, Deepesh
    Diggavi, Suhas N.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (10) : 6639 - 6670
  • [38] Abstractions for devising Byzantine-resilient state machine replication
    Doudou, A
    Garbinato, B
    Guerraoui, R
    19TH IEEE SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS - PROCEEDINGS, 2000, : 144 - 153
  • [39] ON THE GEOMETRIC CONVERGENCE OF BYZANTINE-RESILIENT DISTRIBUTED OPTIMIZATION ALGORITHMS
    Kuwaranancharoen, Kananart
    Sundaram, Shreyas
    SIAM JOURNAL ON OPTIMIZATION, 2025, 35 (01) : 210 - 239
  • [40] Byzantine-resilient dual gossip membership management in clouds
    Lim, JongBeom
    Chung, Kwang-Sik
    Lee, HwaMin
    Yim, Kangbin
    Yu, Heonchang
    SOFT COMPUTING, 2018, 22 (09) : 3011 - 3022