Byzantine-Resilient Decentralized Policy Evaluation With Linear Function Approximation

被引:11
|
作者
Wu, Zhaoxian [1 ,2 ,3 ]
Shen, Han [4 ]
Chen, Tianyi [4 ]
Ling, Qing [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510006, Guangdong, Peoples R China
[3] Pazhou Lab, Guangzhou 510300, Guangdong, Peoples R China
[4] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA
基金
中国国家自然科学基金;
关键词
Signal processing algorithms; Convergence; Function approximation; Optimization; Approximation algorithms; Task analysis; Mathematical model; Policy evaluation; multi-agent reinforcement learning; temporal-difference learning; Byzantine attacks; DISTRIBUTED OPTIMIZATION; CONVERGENCE; ALGORITHMS;
D O I
10.1109/TSP.2021.3090952
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we consider the policy evaluation problem in reinforcement learning with agents on a decentralized and directed network. In order to evaluate the quality of a fixed policy in this decentralized setting, one option is for agents to run decentralized temporal-difference (TD) collaboratively. To account for the practical scenarios where the state and action spaces are large and malicious attacks emerge, we focus on the decentralized TD learning with linear function approximation in the presence of malicious agents (often termed as Byzantine agents). We propose a trimmed mean-based Byzantine-resilient decentralized TD algorithm to perform policy evaluation in this setting. We establish the finite-time convergence rate, as well as the asymptotic learning error that depends on the number of Byzantine agents. Numerical experiments corroborate the robustness of the proposed algorithm.
引用
收藏
页码:3839 / 3853
页数:15
相关论文
共 50 条
  • [11] Byzantine-Resilient Decentralized Stochastic Optimization With Robust Aggregation Rules
    Wu, Zhaoxian
    Chen, Tianyi
    Ling, Qing
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 3179 - 3195
  • [12] Dual-Domain Defenses for Byzantine-Resilient Decentralized Resource Allocation
    Wang, Runhua
    Ling, Qing
    Tian, Zhi
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2024, 10 : 804 - 819
  • [13] Byzantine-Resilient Counting in Networks
    Chatterjee, Soumyottam
    Pandurangan, Gopal
    Robinson, Peter
    2022 IEEE 42ND INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2022), 2022, : 12 - 22
  • [14] Byzantine-Resilient Multiagent Optimization
    Su, Lili
    Vaidya, Nitin H.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (05) : 2227 - 2233
  • [15] A recursive Byzantine-resilient protocol
    Cheng, Chien-Fu
    Tsai, Kuo-Tang
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2015, 48 : 87 - 98
  • [16] Byzantine-resilient Bilevel Federated Learning
    Abbas, Momin
    Zhou, Yi
    Baracaldo, Nathalie
    Samulowitz, Horst
    Ram, Parikshit
    Salonidis, Theodoros
    2024 IEEE 13RD SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, SAM 2024, 2024,
  • [17] Byzantine-Resilient Federated Learning at Edge
    Tao, Youming
    Cui, Sijia
    Xu, Wenlu
    Yin, Haofei
    Yu, Dongxiao
    Liang, Weifa
    Cheng, Xiuzhen
    IEEE TRANSACTIONS ON COMPUTERS, 2023, 72 (09) : 2600 - 2614
  • [18] Low complexity Byzantine-resilient consensus
    Miguel Correia
    Nuno Ferreira Neves
    Lau Cheuk Lung
    Paulo Veríssimo
    Distributed Computing, 2005, 17 : 237 - 249
  • [19] An Efficient Byzantine-Resilient Tuple Space
    Bessani, Alysson Neves
    Correia, Miguel
    Fraga, Joni da Silva
    Lung, Lau Cheuk
    IEEE TRANSACTIONS ON COMPUTERS, 2009, 58 (08) : 1080 - 1094
  • [20] Low complexity Byzantine-resilient consensus
    Correia, M
    Neves, NF
    Lung, LC
    Veríssimo, P
    DISTRIBUTED COMPUTING, 2005, 17 (03) : 237 - 249