Byzantine-Resilient Decentralized Policy Evaluation With Linear Function Approximation

被引:11
|
作者
Wu, Zhaoxian [1 ,2 ,3 ]
Shen, Han [4 ]
Chen, Tianyi [4 ]
Ling, Qing [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510006, Guangdong, Peoples R China
[3] Pazhou Lab, Guangzhou 510300, Guangdong, Peoples R China
[4] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA
基金
中国国家自然科学基金;
关键词
Signal processing algorithms; Convergence; Function approximation; Optimization; Approximation algorithms; Task analysis; Mathematical model; Policy evaluation; multi-agent reinforcement learning; temporal-difference learning; Byzantine attacks; DISTRIBUTED OPTIMIZATION; CONVERGENCE; ALGORITHMS;
D O I
10.1109/TSP.2021.3090952
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we consider the policy evaluation problem in reinforcement learning with agents on a decentralized and directed network. In order to evaluate the quality of a fixed policy in this decentralized setting, one option is for agents to run decentralized temporal-difference (TD) collaboratively. To account for the practical scenarios where the state and action spaces are large and malicious attacks emerge, we focus on the decentralized TD learning with linear function approximation in the presence of malicious agents (often termed as Byzantine agents). We propose a trimmed mean-based Byzantine-resilient decentralized TD algorithm to perform policy evaluation in this setting. We establish the finite-time convergence rate, as well as the asymptotic learning error that depends on the number of Byzantine agents. Numerical experiments corroborate the robustness of the proposed algorithm.
引用
收藏
页码:3839 / 3853
页数:15
相关论文
共 50 条
  • [21] BYZANTINE-RESILIENT DISTRIBUTED COMPUTING SYSTEMS
    PATNAIK, LM
    BALAJI, S
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 1987, 11 : 81 - 91
  • [22] Byzantine-Resilient Secure Federated Learning
    So, Jinhyun
    Guler, Basak
    Avestimehr, A. Salman
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (07) : 2168 - 2181
  • [23] Byzantine-resilient distributed observers for LTI systems
    Mitra, Aritra
    Sundaram, Shreyas
    AUTOMATICA, 2019, 108
  • [24] BYZANTINE-RESILIENT DISTRIBUTED COMPUTING SYSTEMS.
    Patnaik, L.M.
    Balaji, S.
    Sadhana - Academy Proceedings in Engineering Sciences, 1987, 11 (1-2) : 81 - 91
  • [25] Byzantine-Resilient Convergence in Oblivious Robot Networks
    Bouzid, Zohir
    Potop-Butucaru, Maria Gradinariu
    Tixeuil, Sebastien
    DISTRIBUTED COMPUTING AND NETWORKING, 2009, 5408 : 275 - 280
  • [26] Data Encoding for Byzantine-Resilient Distributed Optimization
    Data, Deepesh
    Song, Linqi
    Diggavi, Suhas N.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (02) : 1117 - 1140
  • [27] Byzantine-resilient distributed learning under constraints
    Ding, Dongsheng
    Wei, Xiaohan
    Yu, Hao
    Jovanovic, Mihailo R.
    2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 2260 - 2265
  • [28] SIoTFog: Byzantine-resilient IoT fog networking
    Jian-wen Xu
    Kaoru Ota
    Mian-xiong Dong
    An-feng Liu
    Qiang Li
    Frontiers of Information Technology & Electronic Engineering, 2018, 19 : 1546 - 1557
  • [29] BYRDIE: A BYZANTINE-RESILIENT DISTRIBUTED LEARNING ALGORITHM
    Yang, Zhixiong
    Bajwa, Waheed U.
    2018 IEEE DATA SCIENCE WORKSHOP (DSW), 2018, : 21 - 25
  • [30] Asynchronous Byzantine-Resilient Distributed Optimization with Momentum
    Wan, Yi
    Qu, Yifei
    Zhao, Zuyan
    Yang, Shaofu
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 2022 - 2027