Calogero-Moser and Toda systems for twisted and untwisted affine Lie algebras

被引:28
|
作者
D'Hoker, E
Phong, DH
机构
[1] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90024 USA
[2] Univ Calif Santa Barbara, Inst Theoret Phys, Santa Barbara, CA 93106 USA
[3] Columbia Univ, Dept Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0550-3213(98)00569-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The elliptic Calogero-Moser Hamiltonian and Lax pair associated with a general simple Lie algebra G are shown to scale to the (affine) Toda Hamiltonian and Lax pair. The limit consists in taking the elliptic modulus tau and the Calogero-Moser couplings m to infinity, while keeping fixed the combination M = m e(i pi delta tau) for some exponent delta. Critical scaling limits arise when 1/delta equals the-Coxeter number or the dual Coxeter number for the untwisted and twisted Calogero-Moser systems respectively; the limit consists then of the Toda system for the affine Lie algebras G((1)) and (G((1)))(boolean OR). The limits of the untwisted or twisted Calogero-Moser system, for delta less than these critical values, but non-zero, consists of the ordinary Toda system, while for delta = 0, it consists of the trigonometric Calogero-Moser systems for the algebras G and G(boolean OR) respectively. (C) 1998 Published by Elsevier Science B.V.
引用
收藏
页码:611 / 640
页数:30
相关论文
共 50 条
  • [41] Seiberg-Witten theory and Calogero-Moser systems
    D'Hoker, E
    Phong, DH
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1999, (135): : 75 - 93
  • [42] QUANTUM CALOGERO-MOSER SYSTEMS: A VIEW FROM INFINITY
    Sergeev, Alexander N.
    Veselov, Alexander P.
    XVITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2010, : 333 - +
  • [43] q-KP hierarchy, bispectrality and Calogero-Moser systems
    Iliev, P
    JOURNAL OF GEOMETRY AND PHYSICS, 2000, 35 (2-3) : 157 - 182
  • [45] Realization of the Infinite-Dimensional 3-Algebras in the Calogero-Moser Model
    Yang Yan-Xin
    Yao Shao-Kui
    Zhang Chun-Hong
    Zhao Wei-Zhong
    CHINESE PHYSICS LETTERS, 2015, 32 (04)
  • [46] Singular cotangent bundle reduction & spin Calogero-Moser systems
    Hochgerner, Simon
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (02) : 169 - 192
  • [47] Realization of the Infinite-Dimensional 3-Algebras in the Calogero-Moser Model
    杨燕新
    姚少魁
    张春红
    赵伟忠
    Chinese Physics Letters, 2015, (04) : 9 - 12
  • [48] On elliptic Calogero-Moser systems for complex crystallographic reflection groups
    Etingof, Pavel
    Felder, Giovanni
    Ma, Xiaoguang
    Veselov, Alexander
    JOURNAL OF ALGEBRA, 2011, 329 (01) : 107 - 129
  • [49] Realization of the Infinite-Dimensional 3-Algebras in the Calogero-Moser Model
    杨燕新
    姚少魁
    张春红
    赵伟忠
    Chinese Physics Letters, 2015, 32 (04) : 9 - 12
  • [50] Quantum elliptic Calogero-Moser systems from gauge origami
    Chen, Heng-Yu
    Kimura, Taro
    Lee, Norton
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (02)