Calogero-Moser and Toda systems for twisted and untwisted affine Lie algebras

被引:28
|
作者
D'Hoker, E
Phong, DH
机构
[1] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90024 USA
[2] Univ Calif Santa Barbara, Inst Theoret Phys, Santa Barbara, CA 93106 USA
[3] Columbia Univ, Dept Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0550-3213(98)00569-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The elliptic Calogero-Moser Hamiltonian and Lax pair associated with a general simple Lie algebra G are shown to scale to the (affine) Toda Hamiltonian and Lax pair. The limit consists in taking the elliptic modulus tau and the Calogero-Moser couplings m to infinity, while keeping fixed the combination M = m e(i pi delta tau) for some exponent delta. Critical scaling limits arise when 1/delta equals the-Coxeter number or the dual Coxeter number for the untwisted and twisted Calogero-Moser systems respectively; the limit consists then of the Toda system for the affine Lie algebras G((1)) and (G((1)))(boolean OR). The limits of the untwisted or twisted Calogero-Moser system, for delta less than these critical values, but non-zero, consists of the ordinary Toda system, while for delta = 0, it consists of the trigonometric Calogero-Moser systems for the algebras G and G(boolean OR) respectively. (C) 1998 Published by Elsevier Science B.V.
引用
收藏
页码:611 / 640
页数:30
相关论文
共 50 条
  • [21] An explicit characterization of Calogero-Moser systems
    Gesztesy, F
    Unterkofler, K
    Weikard, R
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (02) : 603 - 656
  • [22] RECOLLEMENT OF DEFORMED PREPROJECTIVE ALGEBRAS AND THE CALOGERO-MOSER CORRESPONDENCE
    Berest, Yuri
    Chalykh, Oleg
    Eshmatov, Farkhod
    MOSCOW MATHEMATICAL JOURNAL, 2008, 8 (01) : 21 - 37
  • [23] Gaudin algebras, RSK and Calogero-Moser cells in Type A
    Brochier, Adrien
    Gordon, Iain
    White, Noah
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2023, 126 (05) : 1467 - 1495
  • [24] Calogero-Moser systems with periodic and doubly periodic interaction potentials and loop algebras
    Fleury, M
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (10) : 4927 - 4937
  • [25] A class of integrable spin Calogero-Moser systems
    Li, LC
    Xu, P
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 231 (02) : 257 - 286
  • [26] A Class of Integrable Spin Calogero-Moser Systems
    Luen-Chau Li
    Ping Xu
    Communications in Mathematical Physics, 2002, 231 : 257 - 286
  • [27] Symmetric Lie superalgebras and deformed quantum Calogero-Moser problems
    Sergeev, A. N.
    Veselov, A. P.
    ADVANCES IN MATHEMATICS, 2017, 304 : 728 - 768
  • [28] Spin Calogero-Moser systems for the cyclic quiver
    Silantyev, Alexey
    XXV INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-25), 2018, 965
  • [29] Dunkl Operators at Infinity and Calogero-Moser Systems
    Sergeev, Alexander N.
    Veselov, Alexander P.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (21) : 10959 - 10986
  • [30] Quantum vs classical Calogero-Moser systems
    Sasaki, Ryu
    BILINEAR INTEGRABLE SYSTEMS: FROM CLASSICAL TO QUATUM, CONTINUOUS TO DISCRETE, 2006, 201 : 259 - 289