QUANTUM CALOGERO-MOSER SYSTEMS: A VIEW FROM INFINITY

被引:3
|
作者
Sergeev, Alexander N. [1 ]
Veselov, Alexander P. [2 ]
机构
[1] Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England
[2] Lomonosov Moscow State Univ, Moscow 119899, Russia
关键词
Quantum Calogero-Moser systems; Symmetric functions; Lie superalgebras;
D O I
10.1142/9789814304634_0020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Various infinite-dimensional versions of Calogero-Moser operator are discussed in relation with the theory of symmetric functions and representation theory of basic classical Lie superalgebras.
引用
收藏
页码:333 / +
页数:2
相关论文
共 50 条
  • [1] Dunkl Operators at Infinity and Calogero-Moser Systems
    Sergeev, Alexander N.
    Veselov, Alexander P.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (21) : 10959 - 10986
  • [2] On spin Calogero-Moser system at infinity
    Khoroshkin, S. M.
    Matushko, M. G.
    Sklyanin, E. K.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (11)
  • [3] Quantum vs classical Calogero-Moser systems
    Sasaki, Ryu
    BILINEAR INTEGRABLE SYSTEMS: FROM CLASSICAL TO QUATUM, CONTINUOUS TO DISCRETE, 2006, 201 : 259 - 289
  • [4] Quantum elliptic Calogero-Moser systems from gauge origami
    Chen, Heng-Yu
    Kimura, Taro
    Lee, Norton
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (02)
  • [5] Quantum elliptic Calogero-Moser systems from gauge origami
    Heng-Yu Chen
    Taro Kimura
    Norton Lee
    Journal of High Energy Physics, 2020
  • [6] Flows of Calogero-Moser Systems
    Ben-Zvi, David
    Nevins, Thomas
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [7] The geometry of Calogero-Moser systems
    Hurtubise, J
    Nevins, T
    ANNALES DE L INSTITUT FOURIER, 2005, 55 (06) : 2091 - 2116
  • [8] Degenerate integrability of quantum spin Calogero-Moser systems
    Reshetikhin, Nicolai
    LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (01) : 187 - 200
  • [9] Quantum versus classical integrability in Calogero-Moser systems
    Corrigan, E
    Sasaki, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (33): : 7017 - 7061
  • [10] Geometry of Calogero-Moser systems
    Biswas, Indranil
    Hurtubise, Jacques
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (09)